1. Articles from Benjamin Potsaid

    1-24 of 36 1 2 »
    1. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus: a pilot study (with video)

      Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus: a pilot study (with video)

      Background and Aims Angiogenesis is associated with neoplastic progression of Barrett’s esophagus (BE). Volumetric optical coherence tomography angiography (OCTA) visualizes subsurface microvasculature without exogenous contrast agents. We investigated the association of OCTA microvascular features with low-grade dysplasia (LGD) and high-grade dysplasia (HGD). Methods Fifty-two patients undergoing BE surveillance or endoscopic eradication therapies for dysplasia were imaged using volumetric OCTA and corresponding histological diagnoses obtained, to yield 97 data sets (non-dysplastic BE (NDBE): N=74; LGD: N=10; HGD: N=13). After evaluating OCTA image quality, 54 datasets (NDBE: N=35; LGD: N=8; HGD: N=11) from 32 patients ...

      Read Full Article
    2. Cubic meter volume optical coherence tomography

      Cubic meter volume optical coherence tomography

      Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 μm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge ...

      Read Full Article
    3. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis

      TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis

      Purpose: Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Methods: Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds ...

      Read Full Article
    4. Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter

      Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter

      We demonstrate a micromotor balloon imaging catheter for ultrahigh speed endoscopic optical coherence tomography (OCT) which provides wide area, circumferential structural and angiographic imaging of the esophagus without contrast agents. Using a 1310 nm MEMS tunable wavelength swept VCSEL light source, the system has a 1.2 MHz A-scan rate and ~8.5 µm axial resolution in tissue. The micromotor balloon catheter enables circumferential imaging of the esophagus at 240 frames per second (fps) with a ~30 µm (FWHM) spot size. Volumetric imaging is achieved by proximal pullback of the micromotor assembly within the balloon at 1.5 mm/sec ...

      Read Full Article
    5. Wideband Electrically Pumped 1050-nm MEMS-Tunable VCSEL for Ophthalmic Imaging

      Wideband Electrically Pumped 1050-nm MEMS-Tunable VCSEL for Ophthalmic Imaging

      In this paper, we present a 1050-nm electrically pumped microelectromechanically tunable vertical cavity surface emitting laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept-source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost and complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide-field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over ...

      Read Full Article
    6. Ultrahigh speed en face OCT capsule for endoscopic imaging

      Ultrahigh speed en face OCT capsule for endoscopic imaging

      Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or ...

      Read Full Article
    7. Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging

      Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging

      In this paper, we present a 1050 nm electricallypumped micro-electro-mechanically-tunable vertical-cavitysurface- emitting-laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost & complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 ...

      Read Full Article
    8. Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD

      Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD

      BACKGROUND AND OBJECTIVE: To investigate the potential of ultrahigh-speed swept-source optical coherence tomography angiography (OCTA) to visualize retinal and choroidal vascular changes in patients with exudative age-related macular degeneration (AMD). PATIENTS AND METHODS: Observational, prospective cross-sectional study. An ultrahigh-speed swept-source prototype was used to perform OCTA of the retinal and choriocapillaris microvasculature in 63 eyes of 32 healthy controls and 19 eyes of 15 patients with exudative AMD. MAIN OUTCOME MEASURE: qualitative comparison of the retinal and choriocapillaris microvasculature in the two groups. RESULTS: Choroidal neovascularization (CNV) was clearly visualized in 16 of the 19 eyes with exudative AMD, located ...

      Read Full Article
    9. Depth-encoded all-fiber swept source polarization sensitive OCT

      Depth-encoded all-fiber swept source polarization sensitive OCT

      Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We ...

      Read Full Article
    10. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

      Correction of rotational distortion for catheter-based en face OCT and OCT angiography

      We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm.

      Read Full Article
    11. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis

      Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis

      Aims To investigate swept-source optical coherence tomography (OCT) angiography in the optic nerve head (ONH) and parafoveal regions in patients with multiple sclerosis (MS). Methods Fifty-two MS eyes and 21 healthy control (HC) eyes were included. There were two MS subgroups: 38 MS eyes without an optic neuritis (ON) history (MS −ON), and 14 MS eyes with an ON history (MS +ON). The OCT images were captured by high-speed 1050 nm swept-source OCT. The ONH flow index (FI) and parafoveal FI were quantified from OCT angiograms. Results The mean ONH FI was 0.160±0.010 for the HC group ...

      Read Full Article
    12. Feature Of The Week 4/2/14: A Compact High-Performance Hand-Held Device for Extending Ophthalmic OCT to New Points of Care (Narrated Presentation)

      Feature Of The Week 4/2/14: A Compact High-Performance Hand-Held Device for Extending Ophthalmic OCT to New Points of Care (Narrated Presentation)

      We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging ...

      Read Full Article
    13. Quantitative Optical Coherence Tomography Angiography of Choroidal Neovascularization in Age-related Macular Degeneration

      Quantitative Optical Coherence Tomography Angiography of Choroidal Neovascularization in Age-related Macular Degeneration

      Purpose To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants A total of 5 normal subjects and 5 subjects with neovascular AMD were included. Methods A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3×3-mm area and comprised 200×200×8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were ...

      Read Full Article
    14. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

      Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

      We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging ...

      Read Full Article
    15. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

      Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

      We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically ...

      Read Full Article
    16. Parafoveal Retinal Vascular Response to Pattern Visual Stimulation Assessed with OCT Angiography

      Parafoveal Retinal Vascular Response to Pattern Visual Stimulation Assessed with OCT Angiography

      We used optical coherence tomography (OCT) angiography with a high-speed swept-source OCT system to investigate retinal blood flow changes induced by visual stimulation with a reversing checkerboard pattern. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to quantify blood flow as measured with parafoveal flow index (PFI), which is proportional to the density of blood vessels and the velocity of blood flow in the parafoveal region of the macula. PFI measurements were taken in 15 second intervals during a 4 minute period consisting of 1 minute of baseline, 2 minutes with an 8 Hz reversing checkerboard pattern stimulation, and 1 ...

      Read Full Article
    17. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology

      Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology

      We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high ...

      Read Full Article
    18. 4D dynamic imaging of the eye using ultrahigh speed SS-OCT

      4D dynamic imaging of the eye using ultrahigh speed SS-OCT

      Recent advances in swept-source / Fourier domain optical coherence tomography (SS-OCT) technology enable in vivo ultrahigh speed imaging, offering a promising technique for four-dimensional (4-D) imaging of the eye. Using an ultrahigh speed tunable vertical cavity surface emitting laser (VCSEL) light source based SS-OCT prototype system, we performed imaging of human eye dynamics in four different imaging modes: 1) Pupillary reaction to light at 200,000 axial scans per second and 9 μm resolution in tissue. 2) Anterior eye focusing dynamics at 100,000 axial scans per second and 9 μm resolution in tissue. 3) Tear film break up at 50 ...

      Read Full Article
    19. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source

      High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source

      We demonstrate ultralong-range swept-source optical coherence tomography (OCT) imaging using vertical cavity surface emitting laser technology. The ability to adjust laser parameters and high-speed acquisition enables imaging ranges from a few centimeters up to meters using the same instrument. We discuss the challenges of long-range OCT imaging. In vivohuman-eye imaging and optical component characterization are presented. The precision and accuracy of OCT-based measurements are assessed and are important for ocular biometry and reproducible intraocular distance measurement before cataract surgery. Additionally, meter-range measurement of fiber length and multicentimeter-range imaging are reported. 3D visualization supports a class of industrial imaging applications ...

      Read Full Article
    20. In vivo imaging of the rodent eye with swept source/Fourier domain OCT

      In vivo imaging of the rodent eye with swept source/Fourier domain OCT

      Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables ...

      Read Full Article
    21. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source

      Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source

      Despite the challenges in achieving high phase stability, Doppler swept-source/Fourier-domain optical coherence tomography (OCT) has advantages of less fringe washout and faster imaging speeds compared to spectral/Fourier-domain detection. This Letter demonstrates swept-source OCT with a vertical cavity surface-emitting laser light source at 400 kHz sweep rate for phase-sensitive Doppler imaging, measuring pulsatile total retinal blood flow with high sensitivity and phase stability. A robust, simple, and computationally efficient phase stabilization approach for phase-sensitive swept-source imaging is also presented.

      Read Full Article
    22. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

      Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers
      We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50–580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning ...
      Read Full Article
    23. 1065nm and 1310nm MEMS tunable VCSEL light source technology for OCT imaging

      1065nm and 1310nm MEMS tunable VCSEL light source technology for OCT imaging

      A novel vertical-cavity surface-emitting laser with a microelectromechanical tuning element enables high-speed, centimeter-range optical coherence tomography. Optical coherence tomography (OCT) is a noninvasive optical imaging technique that can generate micron-resolution 2D and 3D images of tissue and other scattering materials.1 First demonstrated for imaging the human eye and coronary arteries in 1991,1 OCT has become a clinical standard for diagnosing and monitoring treatment of eye disease, with approximately 16 million ophthalmic OCT procedures performed in the US in 2010.2 OCT can also be used for intravascular imaging of plaque to assess heart disease, cancer biopsy imaging, developmental ...

      Read Full Article
    24. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns

      Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns

      High speed Optical Coherence Tomography (OCT) has made it possible to rapidly capture densely sampled 3D volume data. One key application is the acquisition of high quality in vivo volumetric data sets of the human retina. Since the volume is acquired in a few seconds, eye movement during the scan process leads to distortion, which limits the accuracy of quantitative measurements using 3D OCT data. In this paper, we present a novel software based method to correct motion artifacts in OCT raster scans. Motion compensation is performed retrospectively using image registration algorithms on the OCT data sets themselves. Multiple, successively ...

      Read Full Article
    1-24 of 36 1 2 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (36 articles) Massachusetts Institute of Technology
    2. (36 articles) James G. Fujimoto
    3. (36 articles) Benjamin M. Potsaid
    4. (33 articles) Thorlabs
    5. (22 articles) Alex E. Cable
    6. (18 articles) Jonathan J. Liu
    7. (17 articles) Vijay Jayaraman
    8. (15 articles) Tufts University
    9. (15 articles) Jay S. Duker
    10. (15 articles) Praevium Research
    11. (1 articles) University of Iowa
    12. (1 articles) Case Western Reserve University
    13. (1 articles) Milan Sonka
    14. (1 articles) Marco A. Costa
    15. (1 articles) Kyungmoo Lee
    16. (1 articles) Anderson Z. Freitas
    17. (1 articles) Guilherme F. Attizzani
    18. (1 articles) Hiram G. Bezerra
    19. (1 articles) Michael D. Abràmoff
  3. Popular Articles

  4. Picture Gallery

    Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second Ultrahigh-speed volumetric ophthalmic OCT imaging at 800nm and 1050nm Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography Split-spectrum amplitude-decorrelation angiography with optical coherence tomography MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging 1065nm and 1310nm MEMS tunable VCSEL light source technology for OCT imaging Feature Of The Week 4/2/14: A Compact High-Performance Hand-Held Device for Extending Ophthalmic OCT to New Points of Care (Narrated Presentation) OCT Made Easy (Textbook) 3D Mapping of Choroidal Thickness from OCT B-Scans Multi-layer 3D Simultaneous Retinal OCT Layer Segmentation: Just-Enough Interaction for Routine Clinical Use