Quantitative characterization of human breast tissue based on deep learning segmentation of 3D optical coherence tomography images

In this study, we performed dual-modality optical coherence tomography (OCT) characterization (volumetric OCT imaging and quantitative optical coherence elastography) on human breast tissue specimens. We trained and validated a U-Net for automatic image segmentation. Our results demonstrated that U-Net segmentation can be used to assist clinical diagnosis for breast cancer, and is a powerful enabling tool to advance our understanding of the characteristics for breast tissue. Based on the results obtained from U-Net segmentation of 3D OCT images, we demonstrated significant morphological heterogeneity in small breast specimens acquired through diagnostic biopsy. We also found that breast specimens affected by different ...