Student becomes teacher: training faster deep learning lightweight networks for automated identification of optical coherence tomography B-scans of interest using a student-teacher framework

This work explores a student-teacher framework that leverages unlabeled images to train lightweight deep learning models with fewer parameters to perform fast automated detection of optical coherence tomography B-scans of interest. Twenty-seven lightweight models (LWMs) from four families of models were trained on expert-labeled B-scans (∼70 K) as either “abnormal” or “normal”, which established a baseline performance for the models. Then the LWMs were trained from random initialization using a student-teacher framework to incorporate a large number of unlabeled B-scans (∼500 K). A pre-trained ResNet50 model served as the teacher network. The ResNet50 teacher model achieved 96.0% validation accuracy ...