1. Articles from brian e. applegate

    1-24 of 49 1 2 »
    1. Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea

      Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea

      Sounds entering the mammalian ear produce waves that travel from the base to the apex of the cochlea. An electro-mechanical active process amplifies traveling wave motions and enables sound processing over a broad range of frequencies and intensities. The cochlear amplifier requires combining the global traveling wave with the local cellular processes that change along the length of the cochlea given the gradual changes in hair cell and supporting cell anatomy and physiology. Thus, we measured basilar membrane (BM) traveling waves in vivo along the apical turn of the mouse cochlea using volumetric optical coherence tomography and vibrometry (VOCTV). We ...

      Read Full Article
      Mentions: UCLA
    2. Vector of motion measurements in the living cochlea using a 3D OCT vibrometry system

      Vector of motion measurements in the living cochlea using a 3D OCT vibrometry system

      Optical coherence tomography (OCT) has become an important tool for measuring the vibratory response of the living cochlea. It stands alone in its capacity to measure the intricate motion of the hearing organ through the surrounding otic capsule bone. Nevertheless, as an extension of phase-sensitive OCT, it is only capable of measuring motion along the optical axis. Hence, measurements are 1-D. To overcome this limitation and provide a measure of the 3-D vector of motion in the cochlea, we developed an OCT system with three sample arms in a single interferometer. Taking advantage of the long coherence length of our ...

      Read Full Article
    3. Endolymphatic Hydrops is a Marker of Synaptopathy Following Traumatic Noise Exposure

      Endolymphatic Hydrops is a Marker of Synaptopathy Following Traumatic Noise Exposure

      After acoustic trauma, there can be loss of synaptic connections between inner hair cells and auditory neurons in the cochlea, which may lead to hearing abnormalities including speech-in-noise difficulties, tinnitus, and hyperacusis. We have previously studied mice with blast-induced cochlear synaptopathy and found that they also developed a build-up of endolymph, termed endolymphatic hydrops. In this study, we used optical coherence tomography to measure endolymph volume in live CBA/CaJ mice exposed to various noise intensities. We quantified the number of synaptic ribbons and postsynaptic densities under the inner hair cells 1 week after noise exposure to determine if they ...

      Read Full Article
    4. In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device

      In vivo functional imaging of the human middle ear with a hand-held optical coherence tomography device

      We describe an optical coherence tomography and vibrometry system designed for portable hand-held usage in the otology clinic on awake patients. The system provides clinically relevant point-of-care morphological imaging with 14-44 µm resolution and functional vibratory measures with sub-nanometer sensitivity. We evaluated various new approaches for extracting functional information including a multi-tone stimulus, a continuous chirp stimulus, and alternating air and bone stimulus. We also explored the vibratory response over an area of the tympanic membrane (TM) and generated TM thickness maps. Our results suggest that the system can provide real-time in vivo imaging and vibrometry of the ear and ...

      Read Full Article
    5. In Vivo Cochlear imaging provides a tool to study endolymphatic hydrops

      In Vivo Cochlear imaging provides a tool to study endolymphatic hydrops

      Exposure to noise trauma, such as that from improvised explosive devices, can lead to sensorineural hearing loss and a reduced quality of life. In order to elucidate the mechanisms underlying noise-induced hearing loss, we have adapted optical coherence tomography (OCT) for real-time cochlear visua lization in live mice after blast exposure. We demonstrated that endolymphatic hydrops develops following blast injury, and that this phenomenon may be associated with glutamate excitotoxicity and cochlear synaptopathy. Additionally, osmotic stabilization of endolymphatic hydrops partially rescues cochlear synapses after blast trauma. OCT is thus a valuable research tool for investigating the mechanisms underlying acoustic trauma ...

      Read Full Article
      Mentions: UCLA
    6. Postdoc Position at the University of Southern California

      Postdoc Position at the University of Southern California

      A postdoctoral researcher position is available immediately in the Department of Otolaryngology at the University of Southern California. The principal project will be to develop a new type of laser system and spectrometer for highly phase stable Optical Coherence Tomography (OCT) systems. The postdoctoral researcher will work within the lab of Brian Applegate, PhD., Professor of Otolaryngology–Head & Neck Surgery and Biomedical Engineering. Applicants should have a PhD in engineering or related field. A strong candidate will have expertise in one or more of the following areas: optical system design, laser design, spectrometer design, or programming for science/engineering (python ...

      Read Full Article
    7. Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography

      Methylene blue-filled biodegradable polymer particles as a contrast agent for optical coherence tomography

      Optical coherence tomography (OCT) images largely lack molecular information or molecular contrast. We address that issue here, reporting on the development of biodegradable micro and nano-spheres loaded with methylene blue (MB) as molecular contrast agents for OCT. MB is a constituent of FDA approved therapies and widely used as a dye in off-label clinical applications. The sequestration of MB within the polymer reduced toxicity and improved signal strength by drastically reducing the production of singlet oxygen and leuco-MB. The former leads to tissue damage and the latter to reduced image contrast. The spheres are also strongly scattering which improves molecular ...

      Read Full Article
    8. Noise and sensitivity in optical coherence tomography based vibrometry

      Noise and sensitivity in optical coherence tomography based vibrometry

      There is growing interest in using the exquisite phase sensitivity of optical coherence tomography (OCT) to measure the vibratory response in organ systems such as the middle and inner ear. Using frequency domain analysis, it is possible to achieve picometer sensitivity to vibration over a wide frequency band. Here we explore the limits of the frequency domain vibratory sensitivity due to additive noise and consider the implication of phase noise statistics on the estimation of vibratory amplitude and phase. Noise statistics are derived in both the Rayleigh ( s/n = 0 ) and Normal distribution ( s/n > 3 ) limits. These theoretical findings ...

      Read Full Article
    9. Postdoc Position at the University of Southern California

      Postdoc Position at the University of Southern California

      A postdoctoral researcher position is available immediately in the Department of Otolaryngology at the University of Southern California. The principal project will be to develop Optical Coherence Tomography (OCT) systems for functional and morphological imaging in the human ear. The utilization of OCT for imaging in the human ear is a growing field with a range of applications from basic science research to the diagnosis and monitoring of disease. The postdoctoral researcher will work within the lab of Brian Applegate, PhD , but in close collaboration with the group of John Oghalai, MD. They occupy adjacent lab space and are part ...

      Read Full Article
    10. Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system

      Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system

      We have developed a highly phase stable optical coherence tomography and vibrometry system that attaches directly to the accessory area of a surgical microscope common to both the otology clinic and operating room. Careful attention to minimizing sources of phase noise has enabled a system capable of measuring vibrations of the middle ear with a sensitivity of < 5 pm in an awake human patient. The system is shown to be capable of collecting a wide range of information on the morphology and function of the ear in live subjects, including frequency tuning curves below the hearing threshold, maps of tympanic ...

      Read Full Article
    11. Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry

      Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry

      There is indirect evidence that the mammalian cochlea in the low-frequency apical and the more commonly-studied high-frequency basal regions function in fundamentally different ways. Here, we directly tested this hypothesis by measuring sound-induced vibrations of the organ of Corti (OoC) at three turns of the gerbil cochlea using volumetric optical coherence tomography vibrometry (VOCTV), an approach that permits non-invasive imaging through the bone. In the apical turn, there was little frequency selectivity and the displacement-versus-frequency curves had low-pass filter characteristics with a corner frequency of ~0.5-0.9 kHz. The vibratory magnitudes increased compressively with increasing stimulus intensity at all ...

      Read Full Article
    12. Osmotic stabilization prevents cochlear synaptopathy after blast trauma

      Osmotic stabilization prevents cochlear synaptopathy after blast trauma

      Traumatic noise causes hearing loss by damaging sensory hair cells and their auditory synapses. There are no treatments. Here, we investigated mice exposed to a blast wave approximating a roadside bomb. In vivo cochlear imaging revealed an increase in the volume of endolymph, the fluid within scala media, termed endolymphatic hydrops. Endolymphatic hydrops, hair cell loss, and cochlear synaptopathy were initiated by trauma to the mechanosensitive hair cell stereocilia and were K + -dependent. Increasing the osmolality of the adjacent perilymph treated endolymphatic hydrops and prevented synaptopathy, but did not prevent hair cell loss. Conversely, inducing endolymphatic hydrops in control mice ...

      Read Full Article
    13. Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window

      Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window

      A highly phase stable hand-held (HH) endoscopic system has been developed for optical coherence tomography and vibrometry. Designed to transit the ear canal to the middle ear space and peer through the round window (RW), it is capable of imaging the vibratory function of the cochlear soft tissues with subnanometer scale sensitivity. A side-looking, 9 cm long rigid endoscope with a distal diameter of 1.2 mm, was able to fit within the RW niche and provide imaging access. The phase stability was achieved in part by fully integrating a Michelson interferometer into the HH device. Ex vivo imaging of ...

      Read Full Article
    14. Contrast enhancement of pump-probe optical coherence tomography (PP-OCT) based molecular imaging using methylene blue loaded PLGA particles

      Contrast enhancement of pump-probe optical coherence tomography (PP-OCT) based molecular imaging using methylene blue loaded PLGA particles

      Atherosclerosis, a condition in which plaque accumulates on the inner wall of arteries, is often recognized as a precursor to cardiovascular diseases (CVDs), the most common causes of death in the US. Optical Coherence Tomography (OCT) is an intravascular optical diagnosis tool, which can be used to obtain high resolution morphological images of atherosclerotic plaque. However, atherosclerotic plaque components, such as macrophages, can be misclassified due to their signal similarities to fibrin accumulations, cholesterol crystals and microcalcifications. To overcome these challenges, we develop a biocompatible contrast agent to enhance molecular imaging of a Pump-Probe OCT (PPOCT) system. Methylene blue (MB ...

      Read Full Article
    15. ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography

      ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography

      Detection of endolymphatic hydrops is important for diagnosing Meniere’s disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the ...

      Read Full Article
    16. Computer-aided detection and quantification of endolymphatic hydrops within the mouse cochlea in vivo using optical coherence tomography

      Computer-aided detection and quantification of endolymphatic hydrops within the mouse cochlea in vivo using optical coherence tomography

      Diseases that cause hearing loss and/or vertigo in humans such as Meniere’s disease are often studied using animal models. The volume of endolymph within the inner ear varies with these diseases. Here, we used a mouse model of increased endolymph volume, endolymphatic hydrops, to develop a computer-aided objective approach to measure endolymph volume from images collected in vivo using optical coherence tomography. The displacement of Reissner’s membrane from its normal position was measured in cochlear cross sections. We validated our computer-aided measurements with manual measurements and with trained observer labels. This approach allows for computer-aided detection of ...

      Read Full Article
    17. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence

      Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence

      Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous ...

      Read Full Article
    18. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo

      Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo

      The measurement of mechanical vibrations within the living cochlea is critical to understanding the first nonlinear steps in auditory processing, hair cell stimulation, and cochlear amplification. However, it has proven to be a challenging endeavor. This chapter describes how optical coherence tomography (OCT) can be used to measure vibrations within the tissues of the organ of Corti. These experimental measurements can be performed within the unopened cochlea of living mice routinely and reliably.

      Read Full Article
    19. Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model

      Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model

      It is known that the progression of oral cancer is accompanied by changes in both tissue biochemistry and morphology. A multimodal imaging approach combining functional and structural imaging modalities could therefore provide a more comprehensive prognosis of oral cancer. This idea forms the central theme of the current study, wherein this premise is examined in the context of a multimodal imaging system that combines fluorescence lifetime imaging (FLIM) and optical coherence tomography (OCT). Towards this end, in the first part of the present study, the diagnostic advantage obtained by using both fluorescence intensity and lifetime information is assessed. In the ...

      Read Full Article
    20. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

      High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

      Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR ...

      Read Full Article
    21. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

      Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

      Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex user ...

      Read Full Article
    22. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear

      Miniature, minimally invasive, tunable endoscope for investigation of the middle ear

      We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved ...

      Read Full Article
    23. Feature Of The Week 04/05/15: Noninvasive in vivo Imaging Reveals Differences Between Tectorial Membrane and Basilar Membrane Traveling Waves in the Mouse Cochlea

      Feature Of The Week 04/05/15: Noninvasive in vivo Imaging Reveals Differences Between Tectorial Membrane and Basilar Membrane Traveling Waves in the Mouse Cochlea

      Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. While these studies have provided critical information regarding the non-linear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric ...

      Read Full Article
    24. Molecular Imaging in Optical Coherence Tomography

      Molecular Imaging in Optical Coherence Tomography

      Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT’s impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT ...

      Read Full Article
    1-24 of 49 1 2 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (38 articles) Texas A&M University
    2. (13 articles) Stanford University
    3. (7 articles) University of Southern California
    4. (6 articles) UCLA
    5. (6 articles) Rice University
    6. (4 articles) Baylor College of Medicine
    7. (3 articles) Duke University
    8. (2 articles) Harvard University
    9. (2 articles) Audrey K. Bowden
    10. (1 articles) FDA
  3. Popular Articles

  4. Picture Gallery

    Multimodality optical imaging combining optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIM) for morphological and biochemical tissue characterization Fourier Domain Pump-Probe Optical Coherence Tomography Imaging of Melanin Feature Of The Week 6/20/10: Fourier Domain Pump-Probe Optical Coherence Tomography Imaging A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization In Vivo Simultaneous Morphological and Biochemical Optical Imaging of Oral Epithelial Cancer Cornea microstructure and mechanical responses measured with nonlinear optical and optical coherence microscopy using sub-10-fs pulses Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography Feature Of The Week 9/23/12: MGH Researchers Demonstrate Flexible Transbronchial OCT Imaging Needles for Biopsy Guidance Feature Of The Week 04/05/15: Noninvasive in vivo Imaging Reveals Differences Between Tectorial Membrane and Basilar Membrane Traveling Waves in the Mouse Cochlea Massachusetts General Hosptial Receives NIH Grant for Screening for Barrett's Esophagus Progressors with Multimodality Tethered Capsule Image-Guided Biopsy Duke University Receives NIH Grant for Robotic Point-of-Care OCT University or Rochester Receives NIH Grant for Investigation of Brain Elasticity in Aging and Alzheimer's Disease Enabled by Optical Coherence Elastography