1. Articles from michael g. giacomelli

    1-13 of 13
    1. Assessment of Barrett’s esophagus and dysplasia with ultrahigh-speed volumetric en face and cross-sectional optical coherence tomography

      Assessment of Barrett’s esophagus and dysplasia with ultrahigh-speed volumetric en face and cross-sectional optical coherence tomography

      Background  This study aimed to evaluate the use of ultrahigh-speed volumetric en face and cross-sectional optical coherence tomography (OCT) with micromotor catheters for the in vivo assessment of Barrett’s esophagus and dysplasia. Methods  74 OCT datasets with correlated biopsy/endoscopic mucosal resection histology (49 nondysplastic Barrett’s esophagus [NDBE], 25 neoplasia) were obtained from 14 patients with Barrett’s esophagus and a history of dysplasia and 30 with NDBE. The associations between irregular mucosal patterns on en face OCT, absence of mucosal layering, surface signal > subsurface, and > 5 atypical glands on cross-sectional OCT vs. histology and treatment history were ...

      Read Full Article
    2. Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

      Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

      Endoscopic optical coherence tomography (OCT) instruments are mostly side viewing and rely on at least one proximal scan, thus limiting accuracy of volumetric imaging and en face visualization. Previous forward-viewing OCT devices had limited axial scan speeds. We report a forward-viewing fiber scanning 3D-OCT probe with 900 μm field of view and 5 μm transverse resolution, imaging at 1 MHz axial scan rate in the human gastrointestinal tract. The probe is 3.3 mm diameter and 20 mm rigid length, thus enabling passage through the endoscopic channel. The scanner has 1.8 kHz resonant frequency, and each volumetric acquisition takes ...

      Read Full Article
    3. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus: a pilot study (with video)

      Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus: a pilot study (with video)

      Background and Aims Angiogenesis is associated with neoplastic progression of Barrett’s esophagus (BE). Volumetric optical coherence tomography angiography (OCTA) visualizes subsurface microvasculature without exogenous contrast agents. We investigated the association of OCTA microvascular features with low-grade dysplasia (LGD) and high-grade dysplasia (HGD). Methods Fifty-two patients undergoing BE surveillance or endoscopic eradication therapies for dysplasia were imaged using volumetric OCTA and corresponding histological diagnoses obtained, to yield 97 data sets (non-dysplastic BE (NDBE): N=74; LGD: N=10; HGD: N=13). After evaluating OCTA image quality, 54 datasets (NDBE: N=35; LGD: N=8; HGD: N=11) from 32 patients ...

      Read Full Article
    4. Systems and methods of angle-resolved low coherence interferometry based optical correlation

      Systems and methods of angle-resolved low coherence interferometry based optical correlation

      Systems and methods of angle-resolved low coherence interferometry based optical correlation are disclosed. According to an aspect, a method includes directing a sample beam towards a sample for producing a scattered sample beam from the sample. The method also includes receiving the scattered sample beam at a multitude of scattering angles in at least two directions. Further, the method includes cross-correlating the scattered sample beam with a reference beam to produce a two-dimensional angle and depth resolved profile of the sample scattered beam. The method also includes processing the two-dimensional angle and depth scattered profile to obtain correlated information about ...

      Read Full Article
    5. Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy (CLE) and narrowband imaging (NBI) have been used to investigate vascular changes as hallmarks of early cancer in the GI tract. However, the limited frame rate and field of view make CLE imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high speed volumetric imaging of subsurface features at near-microscopic resolution, and can image microvasculature without exogenous contrast agents such as fluorescein, which obliterates the image in areas of bleeding, or after biopsies and resections. OCT has been ...

      Read Full Article
    6. Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy1 and narrow band imaging (NBI)2 have been used to investigate vascular changes as hallmarks of early cancer in the gastrointestinal tract. However, the limited frame rate and field of view make confocal laser endomicroscopy imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high-speed volumetric imaging of subsurface features at near-microscopic resolution,3, 4 and can image microvasculature without exogenous contrast agents,5 such as fluorescein, which obliterates the image in areas of bleeding, or after ...

      Read Full Article
    7. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

      Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

      We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging ...

      Read Full Article
    8. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

      Correction of rotational distortion for catheter-based en face OCT and OCT angiography

      We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm.

      Read Full Article
    9. Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature

      Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature

      Endoscopic imaging technologies such as confocal laser endomicroscopy 1 and narrow band imaging (NBI) 2 have been used to investigate vascular changes as hallmarks of early cancer in the gastrointestinal tract. However, the limited frame rate and field of view make confocal laser endomicroscopy imaging sensitive to motion artifacts, whereas NBI has limited resolution and visualizes only the surface vascular pattern. Endoscopic optical coherence tomography (OCT) enables high-speed volumetric imaging of subsurface features at near-microscopic resolution, 3,4 and can image microvasculature without exogenous contrast agents, 5 such as fluorescein, which obliterates the image in areas of bleeding, or after ...

      Read Full Article
    10. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

      Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

      We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in ...

      Read Full Article
    11. Fourier domain multispectral multiple scattering low coherence interferometry

      Fourier domain multispectral multiple scattering low coherence interferometry

      We have implemented multispectral multiple scattering low coherence interferometry (ms2/LCI) with Fourier domain data collection. The ms2/LCI system is designed to localize features with spectroscopic contrast with millimeter resolution up to 1 cm deep in scattering samples by using photons that have undergone multiple low-angle (forward) scattering events. Fourier domain detection both increases the data acquisition speed of the system and gives access to rich spectroscopic information, compared to the previous single channel, time-domain implementation. Separate delivery and detection angular apertures reduce collection of the diffuse background signal in order to isolate localized spectral features from deeper in ...

      Read Full Article
    12. Imaging Contrast and Resolution in Multiply Scattered Low Coherence Interferometry

      Imaging Contrast and Resolution in Multiply Scattered Low Coherence Interferometry
      With recent results demonstrating imaging using low coherence interferometry to detect multiply scattered light, signal attenuation and imaging resolution remains an open question. To address this, we present detailed modeling results of light propagation in the multiply scattered low coherence interferometry (ms/LCI) configuration. Analytical and Monte Carlo models are used to assess the theoretical resolution and contrast of the system, and to explore the effect of media anisotropy on imaging parameters. Imaging resolution and depth penetration are found to depend on the fraction of photons scattered into a narrow range of forward scattering angles rather than the overall media ...
      Read Full Article
    13. Label-Free, High-Throughput Measurements of Dynamic Changes in Cell Nuclei Using Angle-Resolved Low Coherence Interferometry

      Accurate measurements of nuclear deformation, i.e., structural changes of the nucleus in response to environmental stimuli, are important for signal transduction studies. Traditionally, these measurements require labeling and imaging, and then nuclear measurement using image analysis. This approach is time-consuming, invasive, and unavoidably perturbs cellular systems. Light scattering, an emerging biophotonics technique for probing physical characteristics of living systems, offers a promising alternative. Angle-resolved low-coherence interferometry (a/LCI), a novel light scattering technique, was developed to quantify nuclear morphology for early cancer detection. In this study, a/LCI is used for the first time to noninvasively measure small changes ...
      Read Full Article
    1-13 of 13
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (10 articles) Massachusetts Institute of Technology
    2. (9 articles) James G. Fujimoto
    3. (9 articles) Benjamin M. Potsaid
    4. (9 articles) Hsiang-Chieh Lee
    5. (9 articles) Hiroshi Mashimo
    6. (9 articles) Osman O. Ahsen
    7. (9 articles) Thorlabs
    8. (7 articles) Tsung-Han Tsai
    9. (7 articles) Vijay Jayaraman
    10. (7 articles) Praevium Research
    11. (1 articles) UC Irvine
    12. (1 articles) University of Southern California
    13. (1 articles) The Chinese University of Hong Kong
    14. (1 articles) Qifa Zhou
    15. (1 articles) K. Kirk Shung
    16. (1 articles) Optovue
    17. (1 articles) Heidelberg Engineering
  3. Popular Articles

  4. Picture Gallery

    Imaging Contrast and Resolution in Multiply Scattered Low Coherence Interferometry Fourier domain multispectral multiple scattering low coherence interferometry Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter Correction of rotational distortion for catheter-based en face OCT and OCT angiography Ultrahigh speed endoscopic optical coherence tomography for gastroenterology Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature Feature Of The Week 03/08/2015: Endoscopic Optical Coherence Angiography Enables Three Dimensional Visualization of Subsurface Microvasculature Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus: a pilot study (with video) Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source Optical imaging techniques could offer non-invasive method to measure swelling within the brain, new study finds Using Optical Coherence Tomography as a Surrogate of Measurements of Intracranial Pressure in Idiopathic Intracranial Hypertension Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies