1. Articles from david d. sampson

    1-24 of 112 1 2 3 4 5 »
    1. Cocoa flavanol consumption improves lower extremity endothelial function in healthy individuals and people with type 2 diabetes

      Cocoa flavanol consumption improves lower extremity endothelial function in healthy individuals and people with type 2 diabetes

      Background : diabetes and age are major risk factors for the development of lower extremity peripheral artery disease (PAD). Cocoa flavanol (CF) consumption is associated with lower risk for PAD and improves brachial artery (BA) endothelial function. Objectives : to assess if femoral artery (FA) endothelial function and dermal microcirculation are impaired in individuals with type 2 diabetes mellitus (T2DM) and evaluate the acute effect of CF consumption on FA endothelial function. Methods : in a randomised, controlled, double-blind, cross-over study, 22 individuals ( n = 11 healthy, n = 11 T2DM) without cardiovascular disease were recruited. Participants received either 1350 mg CF or placebo capsules ...

      Read Full Article
    2. Multimodal imaging needle combining optical coherence tomography and fluorescence for imaging of live breast cancer cells labeled with a fluorescent analog of tamoxifen

      Multimodal imaging needle combining optical coherence tomography and fluorescence for imaging of live breast cancer cells labeled with a fluorescent analog of tamoxifen

      Significance: Imaging needles consist of highly miniaturized focusing optics encased within a hypodermic needle. The needles may be inserted tens of millimeters into tissue and have the potential to visualize diseased cells well beyond the penetration depth of optical techniques applied externally. Multimodal imaging needles acquire multiple types of optical signals to differentiate cell types. However, their use has not previously been demonstrated with live cells. Aim: We demonstrate the ability of a multimodal imaging needle to differentiate cell types through simultaneous optical coherence tomography (OCT) and fluorescence imaging. Approach: We characterize the performance of a multimodal imaging needle. This ...

      Read Full Article
    3. Towards standardizing retinal optical coherence tomography angiography: a review

      Towards standardizing retinal optical coherence tomography angiography: a review

      The visualization and assessment of retinal microvasculature are important in the study, diagnosis, monitoring, and guidance of treatment of ocular and systemic diseases. With the introduction of optical coherence tomography angiography (OCTA), it has become possible to visualize the retinal microvasculature volumetrically and without a contrast agent. Many lab-based and commercial clinical instruments, imaging protocols and data analysis methods and metrics, have been applied, often inconsistently, resulting in a confusing picture that represents a major barrier to progress in applying OCTA to reduce the burden of disease. Open data and software sharing, and cross-comparison and pooling of data from different ...

      Read Full Article
    4. OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images

      OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images

      Optical coherence tomography angiography (OCTA) performs non-invasive visualization and characterization of microvasculature in research and clinical applications mainly in ophthalmology and dermatology. A wide variety of instruments, imaging protocols, processing methods and metrics have been used to describe the microvasculature, such that comparing different study outcomes is currently not feasible. With the goal of contributing to standardization of OCTA data analysis, we report a user-friendly, open-source toolbox, OCTAVA (OCTA Vascular Analyzer), to automate the pre-processing, segmentation, and quantitative analysis of en face OCTA maximum intensity projection images in a standardized workflow. We present each analysis step, including optimization of filtering ...

      Read Full Article
    5. Imaging the small with the small: Prospects for photonics in micro-endomicroscopy for minimally invasive cellular-resolution bioimaging

      Imaging the small with the small: Prospects for photonics in micro-endomicroscopy for minimally invasive cellular-resolution bioimaging

      Many bioimaging studies, including those in engineered tissue constructs, intravital microscopy in animal models, and medical imaging in humans, require cellular-resolution imaging of structures deep within a sample. Yet, many of the current approaches are limited in terms of resolution, but also in invasiveness, repeatable imaging of the same location, and accessible imaging depth. We coin the term micro-endomicroscope to describe the emerging class of small, cellular-resolution endoscopic imaging systems designed to image cells in situ while minimizing perturbation of the sample. In this Perspective, we motivate the need for further development of micro-endomicroscopes, highlighting applications that would greatly benefit ...

      Read Full Article
    6. Detection of localized pulsatile motion in cutaneous microcirculation by speckle decorrelation optical coherence tomography angiography

      Detection of localized pulsatile motion in cutaneous microcirculation by speckle decorrelation optical coherence tomography angiography

      Significance: Pulsatility is a vital characteristic of the cardiovascular system. Characterization of the pulsatility pattern locally in the peripheral microvasculature is currently not readily available and would provide an additional source of information, which may prove important in understanding the pathophysiology of arterial stiffening, vascular ageing, and their linkage with cardiovascular disease development. Aim: We aim to confirm the suitability of speckle decorrelation optical coherence tomography angiography (OCTA) under various noncontact/contact scanning protocols for the visualization of pulsatility patterns in vessel-free tissue and in the microvasculature of peripheral human skin. Results: Results from five healthy subjects show distinct pulsatile ...

      Read Full Article
    7. Influence of tissue fixation on depth-resolved birefringence of oral cavity tissue samples

      Influence of tissue fixation on depth-resolved birefringence of oral cavity tissue samples

      Significance: To advance our understanding of the contrast observed when imaging with polarization-sensitive optical coherence tomography (PS-OCT) and its correlation with oral cancerous pathologies, a detailed comparison with histology provided via ex vivo fixed tissue is required. The effects of tissue fixation, however, on such polarization-based contrast have not yet been investigated. Aim: A study was performed to assess the impact of tissue fixation on depth-resolved (i.e., local) birefringence measured with PS-OCT. Approach: A PS-OCT system based on depth-encoded polarization multiplexing and polarization-diverse detection was used to measure the Jones matrix of a sample. A wide variety of ex ...

      Read Full Article
    8. In vivo imaging of the depth-resolved optic axis of birefringence in human skin

      In vivo imaging of the depth-resolved optic axis of birefringence in human skin

      Recent progress has enabled the reconstruction of the local (i.e., depth-resolved) optic axis (OAx) of biological tissue from measurements made with polarization-sensitive optical coherence tomography (PS-OCT). Here we demonstrate local OAx imaging in healthy human skin in vivo . The images reveal dense, weaving patterns that are imperceptible in OCT intensity tomograms or conventional PS-OCT metrics and that suggest a mesh-like tissue organization, consistent with the morphology of dermal collagen. Using co-registered polarization-sensitive optical coherence microscopy, we furthermore investigated the impact of spatial resolution on the recovered OAx patterns and confirmed their consistency. OAx orientation as a contrast mechanism merits ...

      Read Full Article
    9. Jones matrix‐based speckle‐decorrelation angiography using polarization‐sensitive optical coherence tomography

      Jones matrix‐based speckle‐decorrelation angiography using polarization‐sensitive optical coherence tomography

      We show that polarization‐sensitive optical coherence tomography angiography (PS‐OCTA) based on full Jones matrix assessment of speckle decorrelation offers improved contrast and depth of vessel imaging over conventional OCTA. We determine how best to combine the individual Jones matrix elements and compare the resulting image quality to that of a conventional OCT scanner by co‐locating and imaging the same skin locations with closely matched scanning setups. Vessel projection images from finger and forearm skin demonstrate the benefits of Jones matrix‐based PS‐OCTA. Our study provides a promising starting point and a useful reference for future pre ...

      Read Full Article
    10. Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation

      Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation

      Significance: Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications. Aim: Our review provides an overview of the main models and methods, their assumptions and applicability, together with a survey of preclinical ...

      Read Full Article
    11. Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus

      Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus

      The organization of fibrillar tissue on the micrometer scale carries direct implications for health and disease but remains difficult to assess in vivo . Polarization-sensitive optical coherence tomography measures birefringence, which relates to the microscopic arrangement of fibrillar tissue components. Here, we demonstrate a critical improvement in leveraging this contrast mechanism by employing the improved spatial resolution of focus-extended optical coherence microscopy (1.4 µm axially in air and 1.6 µm laterally, over more than 70 µm depth of field). Vectorial birefringence imaging of sheep cornea ex vivo reveals its lamellar organization into thin sections with distinct local optic axis ...

      Read Full Article
    12. Recent progress in optical probing and manipulation of tissue: introduction

      Recent progress in optical probing and manipulation of tissue: introduction

      This feature issue of Biomedical Optics Express represents a cross-section of the most recent work in tissue optics, including exciting developments in tissue optical clearing, deep tissue imaging, optical elastography, nanophotonics in tissue, and therapeutic applications of light, amongst others. A collection of 33 papers provides a comprehensive overview of current research in tissue optics, much of it inspired and informed by the pioneering work of Prof. Valery Tuchin. The issue contains three invited manuscripts and several mini-reviews that we hope will benefit researchers in this exciting area.

      Read Full Article
    13. Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo

      Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo

      Stromal collagen organization has been identified as a potential prognostic indicator in a variety of cancers and other diseases accompanied by fibrosis. Changes in the connective tissue are increasingly considered for grading dysplasia and progress of oral squamous cell carcinoma, investigated mainly ex vivo by histopathology. In this study, polarization-sensitive optical coherence tomography (PS-OCT) with local phase retardation imaging is used for the first time to visualize depth-resolved (i.e., local) birefringence of healthy human oral mucosa in vivo . Depth-resolved birefringence is shown to reveal the expected local collagen organization. To demonstrate proof-of-principle, 3D image stacks were acquired at labial ...

      Read Full Article
    14. Short-time series optical coherence tomography angiography and its application to cutaneous microvasculature

      Short-time series optical coherence tomography angiography and its application to cutaneous microvasculature

      We present a new optical coherence tomography (OCT) angiography method for imaging tissue microvasculature in vivo based on the characteristic frequency-domain flow signature in a short time series of a single voxel. The angiography signal is generated by Fourier transforming the OCT signal time series from a given voxel in multiple acquisitions and computing the average magnitude of non-zero (high-pass) frequency components. Larger temporal variations of the OCT signal caused by blood flow result in higher values of the average magnitude in the frequency domain compared to those from static tissue. Weighting of the signal by the inverse of the ...

      Read Full Article
    15. Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography

      Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography

      It is challenging to recover local optic axis orientation from samples probed with fiber-based polarization-sensitive optical coherence tomography (PS-OCT). In addition to the effect of preceding tissue layers, the transmission through fiber and system elements, and imperfect system alignment, need to be compensated. Here, we present a method to retrieve the required correction factors from measurements with depth-multiplexed PS-OCT, which accurately measures the full Jones matrix. The correction considers both retardation and diattenuation and is applied in the wavenumber domain, preserving the axial resolution of the system. The robustness of the method is validated by measuring a birefringence phantom with ...

      Read Full Article
    16. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes

      Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes

      Miniaturised optical coherence tomography (OCT) fibre-optic probes have enabled high-resolution cross-sectional imaging deep within the body. However, existing OCT fibre-optic probe fabrication methods cannot generate miniaturised freeform optics, which limits our ability to fabricate probes with both complex optical function and dimensions comparable to the optical fibre diameter. Recently, major advances in two-photon direct laser writing have enabled 3D printing of arbitrary three-dimensional micro/nanostructures with a surface roughness acceptable for optical applications. Here, we demonstrate the feasibility of 3D printing of OCT probes. We evaluate the capability of this method based on a series of characterisation experiments. We report ...

      Read Full Article
    17. Label‐free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography

      Label‐free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography

      We employ optical coherence tomography (OCT) and optical coherence microscopy (OCM) to study conjunctival lymphatics in porcine eyes ex vivo . This study is a precursor to the development of in vivo imaging of the collecting lymphatics for potentially guiding and monitoring glaucoma filtration surgery. OCT scans at 1300 nm and higher‐resolution OCM scans at 785 nm reveal the lymphatic vessels via their optical transparency. Equivalent signal characteristics are also observed from blood vessels largely free of blood (and devoid of flow) in the ex vivo conjunctiva. In our lymphangiography, vessel networks were segmented by compensating the depth attenuation in ...

      Read Full Article
    18. Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation

      Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation

      Realistic simulation of image formation in optical coherence tomography, based on Maxwell’s equations, has recently been demonstrated for sample volumes of practical significance. Yet, there remains a limitation whereby reducing the size of cells used to construct a computational grid, thus allowing for a more realistic representation of scatterer microstructure, necessarily reduces the overall sample size that can be modelled. This is a significant problem since, as is well known, the microstructure of a scatterer significantly influences its scattering properties. Here we demonstrate that an optimized scatterer design can overcome this problem resulting in good agreement between simulated and ...

      Read Full Article
    19. A study of the effects of supine position and fluid intake on normal airway geometry using anatomical optical coherence tomography

      A study of the effects of supine position and fluid intake on normal airway geometry using anatomical optical coherence tomography

      Airway inhalation injuries are present in up to a third of all major burns patients and are the leading cause of mortality among this population. Understanding the mechanism of injury could minimise oedema (swelling) and airway damage. In this study, we present an anatomical OCT (aOCT) imaging system, based on a 1300-nm wavelength, high-speed, long-range MEMS-VCSEL swept laser source, for real-time volumetric imaging and assessment of inhalation injuries in airways up to 3 cm in diameter. A custom fibre-optic probe with GRIN lens and micro prism is inserted though the nasal passage. Airway cross-sectional images acquired are used to assess ...

      Read Full Article
    20. Special Section Guest Editorial: Commemorating 25 Years of Optical Coherence Tomography: a Perspective on Biomedical Applications

      Special Section Guest Editorial: Commemorating 25 Years of Optical Coherence Tomography: a Perspective on Biomedical Applications

      ptical coherence tomography (OCT) has become a major medical imaging technology in the time since its inception now more than 25 years ago. During this time, OCT has become very well established in ophthalmology, and this application area largely dominates the field. Next in importance and stage of development is cardiovascular medicine, also a strongly commercial technology, but at an earlier stage and a slower pace of uptake than ophthalmology. Other application areas are generally less well developed, but continue to grow, and new opportunities continue to emerge across a wide range of topics, including beyond medicine and biology. In ...

      Read Full Article
    21. Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta

      Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta

      Cellular-scale imaging of the mechanical properties of tissue has helped to reveal the origins of disease; however, cellular-scale resolution is not readily achievable in intact tissue volumes. Here, we demonstrate volumetric imaging of Young’s modulus using ultrahigh-resolution optical coherence elastography, and apply it to characterizing the stiffness of mouse aortas. We achieve isotropic resolution of better than 15 μ m over a 1-mm lateral field of view through the entire depth of an intact aortic wall. We employ a method of quasi-static compression elastography that measures volumetric axial strain and uses a compliant, transparent layer to measure surface axial stress ...

      Read Full Article
    22. Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration

      Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration

      Transbronchial needle aspiration (TBNA) of small lesions or lymph nodes in the lung may result in nondiagnostic tissue samples. We demonstrate the integration of an optical coherence tomography (OCT) probe into a 19-gauge flexible needle for lung tissue aspiration. This probe allows simultaneous visualization and aspiration of the tissue. By eliminating the need for insertion and withdrawal of a separate imaging probe, this integrated design minimizes the risk of dislodging the needle from the lesion prior to aspiration and may facilitate more accurate placement of the needle. Results from in situ imaging in a sheep lung show clear distinction between ...

      Read Full Article
    23. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography

      Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography

      Purpose : To evaluate the impact of image magnification correction on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurements using optical coherence tomography angiography (OCTA). Methods : Participants with healthy retinas were recruited for ocular biometry, refraction, and RTVue XR Avanti OCTA imaging with the 3 × 3-mm protocol. The foveal and parafoveal SRVD and FAZA were quantified with custom software before and after correction for magnification error using the Littman and the modified Bennett formulae. Relative changes between corrected and uncorrected SRVD and FAZA were calculated. Results : Forty subjects were enrolled and the median (range) age of the ...

      Read Full Article
    24. The emergence of optical elastography in biomedicine

      The emergence of optical elastography in biomedicine

      Optical elastography, the use of optics to characterize and map the mechanical properties of biological tissue, involves measuring the deformation of tissue in response to a load. Such measurements may be used to form an image of a mechanical property, often elastic modulus, with the resulting mechanical contrast complementary to the more familiar optical contrast. Optical elastography is experiencing new impetus in response to developments in the closely related fields of cell mechanics and medical imaging, aided by advances in photonics technology, and through probing the microscale between that of cells and whole tissues. Two techniques — optical coherence elastography and ...

      Read Full Article
    1-24 of 112 1 2 3 4 5 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (112 articles) University of Western Australia
    2. (12 articles) Sir Charles Gairdner Hospital
    3. (6 articles) Harvard University
    4. (5 articles) University of Illinois at Urbana-Champaign
    5. (5 articles) Massachusetts General Hospital
    6. (3 articles) University College London
    7. (2 articles) Nicolaus Copernicus University
    8. (2 articles) University of Houston
    9. (2 articles) Academic Medical Center at the University of Amsterdam
    10. (2 articles) Oregon Health & Science University
    11. (1 articles) Northwestern University
    12. (1 articles) University College London
  3. Popular Articles

  4. Picture Gallery

    Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways Imaging of Breast Cancer with Optical Coherence Tomography Needle Probes: Feasibility and Initial Results Feature Of The Week 7/8/12: University of Western Australia Demostrates Freehand Lateral Scanning of OCT Needle Probes Influence of scan direction on subfoveal choroidal vascularity index using optical coherence tomography Subthreshold Nanosecond Laser for Non-resolving Central Serous Chorioretinopathy: A Double-masked Sham-controlled Randomised Trial Optical Coherence Tomography Angiography (OCTA) to Assess Cardiac Output and Cerebral Perfusion at the Time of Children's Cardiac Surgery Recent advances in optical coherence tomography for anterior segment imaging in small animals and their clinical implications Intraoperative optical coherence tomography-guided donor corneal tissue assessment and preparation Peripapillary and fovea avascular zone optical coherence tomography angiography parameters in exfoliation glaucoma versus primary open-angle glaucoma versus healthy eyes Comparison of the proposed DCNN model with standard CNN architectures for retinal diseases classification Massachusetts General Hosptial Receives NIH Grant for Screening for Barrett's Esophagus Progressors with Multimodality Tethered Capsule Image-Guided Biopsy