1. Articles from Jin Won Kim

    1-18 of 18
    1. Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque

      Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque

      Rationale: Inflammation plays a pivotal role in the pathogenesis of the acute coronary syndrome. Detecting plaques with high inflammatory activity and specifically treating those lesions can be crucial to prevent life-threatening cardiovascular events. Methods: Here, we developed a macrophage mannose receptor (MMR)-targeted theranostic nanodrug (mannose-polyethylene glycol-glycol chitosan-deoxycholic acid-cyanine 7-lobeglitazone; MMR-Lobe-Cy) designed to identify inflammatory activity as well as to deliver peroxisome proliferator-activated gamma (PPARγ) agonist, lobeglitazone, specifically to high-risk plaques based on the high mannose receptor specificity. The MMR-Lobe-Cy was intravenously injected into balloon-injured atheromatous rabbits and serial in vivo optical coherence tomography (OCT)-near-infrared fluorescence (NIRF) structural-molecular imaging ...

      Read Full Article
      Mentions: Korea University
    2. Imaging catheter system

      Imaging catheter system

      Disclosed is an imaging catheter system that utilizes optical coherence tomography and autofluorescence lifetime imaging microscopy. The disclosed imaging catheter system may include: an autofluorescence light source; an OCT device; a catheter device configured to receive rays inputted from the autofluorescence light source and an OCT light source of the OCT device and scan a specimen; an optical detector unit configured to detect autofluorescence generated from the specimen; and a first optics system configured to transfer the autofluorescence to the optical detector unit and transfer a ray of the OCT light source reflected from the specimen to the OCT device.

      Read Full Article
    3. Flexible endoscopic micro-optical coherence tomography for three-dimensional imaging of the arterial microstructure

      Flexible endoscopic micro-optical coherence tomography for three-dimensional imaging of the arterial microstructure

      Micro-optical coherence tomography (µOCT) is a novel imaging approach enabling visualization of the microstructures of biological tissues at a cellular or sub-cellular level. However, it has been challenging to develop a miniaturized flexible endoscopic µOCT probe allowing helical luminal scanning. In this study, we built a flexible endoscopic µOCT probe with an outer diameter of 1.2 mm, which acquires three-dimensional images of the arterial microstructures via helical scanning with an axial and lateral resolutions of 1.83 µm and 3.38 µm in air, respectively. Furthermore, the depth of focus of the µOCT imaging probe was extended two-fold using ...

      Read Full Article
    4. Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging

      Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging

      Comprehensive imaging of both the structural and biochemical characteristics of atherosclerotic plaque is essential for the diagnosis and study of coronary artery disease because both a plaque’s morphology and its biochemical composition affect the level of risk it poses. Optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIm) are promising optical imaging methods for characterizing coronary artery plaques morphologically and biochemically, respectively. In this study, we present a hybrid intravascular imaging device, including a custom-built OCT/FLIm system, a hybrid optical rotary joint, and an imaging catheter, to visualize the structure and biochemical composition of the plaque in an ...

      Read Full Article
    5. Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography

      Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography

      The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed ...

      Read Full Article
    6. Characteristics of Earlier Versus Delayed Presentation of Very Late Drug‐Eluting Stent Thrombosis: An Optical Coherence Tomographic Study

      Characteristics of Earlier Versus Delayed Presentation of Very Late Drug‐Eluting Stent Thrombosis: An Optical Coherence Tomographic Study

      Background The pathophysiology underlying very late drug‐eluting stent ( DES ) thrombosis is not sufficiently understood. Using optical coherence tomography, we investigated characteristics of very late stent thrombosis ( VLST ) according to different onset times. Methods and Results A total of 98 patients from 10 South Korean hospitals who underwent optical coherence tomography for evaluation of very late DES thrombosis were retrospectively included in analyses. VLST occurred at a median of 55.1 months after DES implantation. All patients were divided into 2 equal groups of earlier versus delayed presentation of VLST , according to median onset time. In total, 27 patients were ...

      Read Full Article
    7. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter

      Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter

      Micro-optical coherence tomography (μOCT) is an advanced imaging technique that acquires a three-dimensional microstructure of biological samples with a high spatial resolution, up to 1 μm, by using a broadband light source and a high numerical aperture (NA) lens. As high NA produces a short depth of focus (DOF), extending the DOF is necessary to obtain a reasonable imaging depth. However, due to the complexity of optics and the limited space, it has been challenging to fabricate endoscopic μOCT, which is essential for clinical translation. Here, we report an endoscopic μOCT probe with an extended DOF by using a binary ...

      Read Full Article
    8. Single cardiac cycle three-dimensional intracoronary optical coherence tomography

      Single cardiac cycle three-dimensional intracoronary optical coherence tomography

      While high-speed intracoronary optical coherence tomography (OCT) provides three-dimensional (3D) visualization of coronary arteries in vivo , imaging speeds remain insufficient to avoid motion artifacts induced by heartbeat, limiting the clinical utility of OCT. In this paper, we demonstrate development of a high-speed intracoronary OCT system (frame rate: 500 frames/s, pullback speed: 100 mm/s) along with prospective electrocardiogram (ECG) triggering technology, which enabled volumetric imaging of long coronary segments within a single cardiac cycle (70 mm pullback in 0.7 s) with minimal cardiac motion artifact. This technology permitted detailed visualization of 3D architecture of the coronary arterial wall ...

      Read Full Article
    9. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

      Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

      Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo . However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found ...

      Read Full Article
    10. Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage

      Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage

      Purpose: Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the microstructure of arterial walls in vivo . IV-OCT enables the clinician to clearly observe and accurately measure stent apposition and neointimal coverage of coronary stents, which are associated with side effects such as in-stent thrombosis. In this study, the authors present an algorithm for quantifying stent apposition and neointimal coverage by automatically detecting lumen contours and stent struts in IV-OCT images. Methods: The algorithm utilizes OCT intensity images and their first and second gradient images along the axial direction to detect lumen contours and stent strut ...

      Read Full Article
    11. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural–molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery

      Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural–molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery

      Aims Inflammation plays essential role in development of plaque disruption and coronary stent-associated complications. This study aimed to examine whether intracoronary dual-modal optical coherence tomography (OCT)-near-infrared fluorescence (NIRF) structural–molecular imaging with indocyanine green (ICG) can estimate inflammation in swine coronary artery. Methods and results After administration of clinically approved NIRF-enhancing ICG (2.0 mg/kg) or saline, rapid coronary imaging (20 mm/s pullback speed) using a fully integrated OCT-NIRF catheter was safely performed in 12 atheromatous Yucatan minipigs and in 7 drug-eluting stent (DES)-implanted Yorkshire pigs. Stronger NIRF activity was identified in OCT-proven high-risk plaque compared ...

      Read Full Article
    12. A bi-directional assessment of spontaneous coronary artery dissection by three-dimensional flythrough rending of optical coherence tomography images

      A bi-directional assessment of spontaneous coronary artery dissection by three-dimensional flythrough rending of optical coherence tomography images

      A 71-year-old woman was admitted to our hospital due to unstable chest pain. Coronary angiography demonstrated a complex eccentric lesion with 80% narrowing of the right coronary arterial lumen ( Panel A ). Intravascular optical coherence tomography (IV-OCT) revealed typical characteristics of spontaneous coronary artery...

      Read Full Article
    13. Feature Of The Week 8/31/14: Fully Integrated High-speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo using a Clinically-available NIRF Emitting Indocyanine Green to Detect Inflamed Lipid-rich Atheromata in Coronary-sized Vessels

      Feature Of The Week 8/31/14: Fully Integrated High-speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo using a Clinically-available NIRF Emitting Indocyanine Green to Detect Inflamed Lipid-rich Atheromata in Coronary-sized Vessels

      In current study, we fully integrated near-infrared fluorescence (NIRF) molecular imaging into intravascular OCT structural imaging. The OCT/NIRF single catheter imaging clearly demonstrated the microstructure of atheromata and simultaneously identified ICG-enhancing macrophage abundant lipid-rich areas of the plaques. Ex vivo NIRF imaging evidently validated in vivo OCT-NIRF imaging. NIRF signals on ex vivo fluorescence reflectance imaging colocalized well with in vivo NIRF imaging. In vitro ICG cell uptake, correlative fluorescence microscopy, and histopathology corroborated the in vivo imaging findings. Herein, our research team have solved the issues critical for application of this OCT/NIRF imaging technology to clinical practice ...

      Read Full Article
    14. Fully Integrated High-Speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence–Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atheromata in Coronary-Sized Vessels

      Fully Integrated High-Speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence–Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atheromata in Coronary-Sized Vessels

      Background— Lipid-rich inflamed coronary plaques a reprone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques invivo using fully integrated high-speed optical coherence tomography (OCT)/ near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration– a pproved indocyanine green (ICG). Methods a nd Results— A n integrated high-speed intravascular OCT/NIRF imaging c a theter a nd a du a l-mod a l OCT/NIRF system were constructed b a sed on a cl in ic a l OCT pl a tform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration– approved NIRF-emitting ICG ...

      Read Full Article
    15. Coronary Stent Fracture Complicated Multiple Aneurysms Confirmed by 3-Dimensional Reconstruction of Intravascular-Optical Coherence Tomography in a Patient Treated With Open-Cell Designed Drug-Eluting Stent

      Coronary Stent Fracture Complicated Multiple Aneurysms Confirmed by 3-Dimensional Reconstruction of Intravascular-Optical Coherence Tomography in a Patient Treated With Open-Cell Designed Drug-Eluting Stent

      A 55-year-old man with a previous history of cerebral infarct and hypertension presented to our cardiovascular center complaining of angina in November 2011. Chronic total occlusion in the proximal left anterior descending artery was identified by coronary angiography (Figure 1A). The patient subsequently underwent percutaneous coronary intervention. Wiring was done successfully with a tapered stiff wire (Conquest Pro 20; ASAHI INTECC). After multiple predilation, a single drug-eluting stent (3.0 × 18 mm) of an open-cell design and bioabsorbable polymer (Nobori; Terumo, Tokyo, Japan) was implanted using a 3.5-mm noncompliant balloon (inflation pressure, 24 atmospheric pressure; Quantum Maverick Balloon; Boston ...

      Read Full Article
    16. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo

      Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo

      Advancing understanding of human coronary artery disease requires new methods that can be used in patients for studying atherosclerotic plaque microstructure in relation to the molecular mechanisms that underlie its initiation, progression and clinical complications, including myocardial infarction and sudden cardiac death. Here we report a dual-modality intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo using a combination of optical frequency domain imaging (OFDI) and near-infrared fluorescence (NIRF) imaging. By providing simultaneous molecular information in the context of the surrounding tissue microstructure, this new catheter could provide new opportunities for investigating coronary atherosclerosis and stent healing and for ...

      Read Full Article
    17. A Prospective, Randomized, 6-Month Comparison of the Coronary Vasomotor Response Associated With a Zotarolimus- Versus a Sirolimus-Eluting Stent

      Objectives: We prospectively compared coronary endothelial dysfunction in patients with zotarolimus-eluting stent (ZES) versus sirolimus-eluting stent (SES) implantation at 6-month follow-up. Background: A ZES has been associated with uniform and rapid healing of the endothelium. Methods: Fifty patients were randomly treated with intravascular ultrasound-guided stenting with a single stent to the mid-segment of the left anterior descending artery (20 ZES, 20 SES, and 10 bare-metal stents), and endothelial function was estimated before and after intervention at 6-month follow-up by incremental acetylcholine (Ach) (10, 20, 50, and 100 µg/min) and nitrate (200 µg/min) infusions into the left coronary ostium ...

      Read Full Article
      Mentions: Korea University
    1-18 of 18
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (14 articles) Korea University
    2. (11 articles) Hanyang University
    3. (9 articles) Korea Advanced Institute of Science and Technology
    4. (2 articles) Harvard University
    5. (2 articles) Massachusetts General Hospital
    6. (2 articles) FDA
    7. (1 articles) Philips Healthcare
    8. (1 articles) Terumo Corporation
    9. (1 articles) Boston Scientific
    10. (1 articles) Abbott
  3. Popular Articles

  4. Picture Gallery

    Coronary Stent Fracture Complicated Multiple Aneurysms Confirmed by 3-Dimensional Reconstruction of Intravascular-Optical Coherence Tomography in a Patient Treated With Open-Cell Designed Drug-Eluting Stent Three-dimensional intravascular optical coherence tomography rendering assessment of spontaneous coronary artery dissection concomitant with left main ostial critical stenosis Fully Integrated High-Speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo Using a Clinically Available Near-Infrared Fluorescence–Emitting Indocyanine Green to Detect Inflamed Lipid-Rich Atheromata in Coronary-Sized Vessels Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo Feature Of The Week 8/31/14: Fully Integrated High-speed Intravascular OCT/NIRF Structural/Molecular Imaging In Vivo using a Clinically-available NIRF Emitting Indocyanine Green to Detect Inflamed Lipid-rich Atheromata in Coronary-sized Vessels Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural–molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage Single cardiac cycle three-dimensional intracoronary optical coherence tomography Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter Structural abnormalities associated with glaucoma using swept-source optical coherence tomography in patients with systemic sclerosis Clinical presentation does not affect acute mechanical performance of the Novolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography Evaluating optical coherence tomography (OCT) findings as potential biomarkers in central nervous system (CNS) lymphoma with or without ocular involvement