1. Articles from Yazan Gharaibeh

    1-2 of 2
    1. Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets

      Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets

      We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravascular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features. We incorporated features developed in previous studies (e.g., optical attenuation and A-line peaks). In addition, we included vascular lumen morphology and three-dimensional (3-D) digital edge and texture features. Classification methods were developed using expansive datasets (∼7000  images), consisting of both clinical in-vivo images and an ex-vivo dataset, which was validated using 3-D cryo-imaging/histology. Conditional random field was used to perform 3-D classification noise cleaning of classification results. We tested various multiclass approaches, classifiers ...

      Read Full Article
    2. Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images

      Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images

      We develop neural-network-based methods for classifying plaque types in clinical intravascular optical coherence tomography (IVOCT) images of coronary arteries. A single IVOCT pullback can consist of >500 microscopic-resolution images, creating both a challenge for physician interpretation during an interventional procedure and an opportunity for automated analysis. In the proposed method, we classify each A-line, a datum element that better captures physics and pathophysiology than a voxel, as a fibrous layer followed by calcification (fibrocalcific), a fibrous layer followed by a lipidous deposit (fibrolipidic), or other. For A-line classification, the usefulness of a convolutional neural network (CNN) is compared with that ...

      Read Full Article
    1-2 of 2
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (2 articles) Case Western Reserve University
    2. (2 articles) David L. Wilson
    3. (2 articles) Hiram G. Bezerra
    4. (1 articles) Ospedali Riuniti di Bergamo
    5. (1 articles) Giulio Guagliumi
  3. Popular Articles

  4. Picture Gallery

    Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets Intravitreal Ranibizumab Monotherapy or Combined with Laser for Diabetic Macular Edema (OCT guided study) Prospective evaluation of drug eluting self‐apposing stent for the treatment of unprotected left main coronary artery disease: 1‐year results of the TRUNC study Clinical validation of the RTVue optical coherence tomography angiography image quality indicators Intraoperative OCT-Assisted Retinal Detachment Repair in the DISCOVER Study: Impact and Outcomes Analysis of Retinal Vascular Density using Optical Coherence Tomography Angiography, to Differentiate Healthy, Glaucoma Suspect and Glaucomatous Eyes (Thesis) Correlation between in vivo near-infrared spectroscopy and optical coherence tomography detected lipid-rich plaques with post-mortem histology Simultaneous morphological and flow imaging enabled by megahertz intravascular Doppler optical coherence tomography Ultrastructural analysis of a corneal dellen using optical coherence tomography Optical coherence tomography through a rigid borescope applied to quantification of articular cartilage thickness in a porcine knee model Detection of Optical Coherence Tomography–Defined Thin-Cap Fibroatheroma in the Coronary Artery Using Deep Learning