1. Articles from Acner Camino

    1-18 of 18
    1. Bulk motion subtraction in optical coherence tomography angiography

      Bulk motion subtraction in optical coherence tomography angiography

      Described herein is an algorithm to remove decorrelation noise due to bulk motion in optical coherence tomography angiography (OCTA). OCTA B-frames are divided into segments within which the bulk motion velocity could be assumed constant. This velocity is recovered using linear regression of decorrelation versus the logarithm of reflectance in axial lines (A-lines) identified as bulk tissue by percentile analysis. The fitting parameters are used to calculate a reflectance-adjusted threshold for bulk motion decorrelation. Below this threshold, voxels are identified as non-flow tissue, and their flow values are set to zeros. Above this threshold, the voxels are identified as flow ...

      Read Full Article
    2. Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration

      Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration

      Age-related macular degeneration (AMD) is a vision-threatening disease that affects the outer retina and choroid of elderly adults. Because photoreceptors are found in the outer retina and rely primarily on the trophic support of the underlying choriocapillaris, imaging of flow or lack thereof in choriocapillaris by optical coherence tomography angiography (OCTA) has great clinical potential in AMD assessment. We introduce a metric using OCTA, named “focal perfusion loss” (FPL) to describe the effects of age and non-neovascular AMD on choriocapillaris flow. Because OCTA imaging of choriocapillaris is vulnerable to artifacts—namely motion, projections, segmentation errors, and shadows—they are removed ...

      Read Full Article
    3. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography

      Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography

      Elevated intraocular pressure (IOP) is an important risk factor for glaucoma. However, the role of IOP in glaucoma progression, as well as retinal physiology in general, remains incompletely understood. We demonstrate the use of visible light optical coherence tomography to measure retinal responses to acute IOP elevation in Brown Norway rats. We monitored retinal responses in reflectivity, angiography, blood flow, oxygen saturation (sO2 ), and oxygen metabolism over a range of IOP from 10 to 100 mmHg. As IOP was elevated, nerve fiber layer reflectivity was found to decrease. Vascular perfusion in the three retinal capillary plexuses remained steady until IOP ...

      Read Full Article
    4. Signal strength reduction effects in optical coherence tomographic angiography

      Signal strength reduction effects in optical coherence tomographic angiography

      Objective To elucidate the relationship between vessel density (VD) measurements and signal strength in optical coherence tomography angiography (OCTA). Design Cross-sectional study. Subjects: Healthy volunteers. Methods OCTA images obtained from healthy volunteers were analyzed to demonstrate the relationship between signal strength index (SSI) and VD. Experiments were performed to determine the effects of signal strength reduction on VD measurements on the Optovue/AngioVue and Cirrus/AngioPlex OCTA systems. Signal strength reduction was generated by either neutral density filters (NDF) or defocus. Main Outcome Measures Regression analysis of signal strength effects on VD. Results VD decreased linearly with signal strength with ...

      Read Full Article
    5. Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition

      Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition

      Defocusing, vignetting, and bulk motion degrade the image quality of optical coherence tomography angiography (OCTA) more significantly than structural OCT. The assessment of focus, alignment conditions, and stability of imaging subjects in commercially available OCTA systems are currently based on OCT signal quality alone, without knowledge of OCTA signal quality. This results in low yield rates for further quantification. In this Letter, we developed a novel OCTA platform based on a graphics processing unit (GPU) for a real-time, high refresh rate, B-san-by-B-scan split-spectrum amplitude-decorrelation angiography. The GPU provides a real-time display of both cross-sectional and en face images to assist ...

      Read Full Article
    6. DETECTION OF CLINICALLY UNSUSPECTED RETINAL NEOVASCULARIZATION WITH WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY

      DETECTION OF CLINICALLY UNSUSPECTED RETINAL NEOVASCULARIZATION WITH WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY

      Purpose: To evaluate wide-field optical coherence tomography angiography (OCTA) for detection of clinically unsuspected neovascularization (NV) in diabetic retinopathy (DR). Methods: This prospective observational single-center study included adult patients with a clinical diagnosis of nonproliferative DR. Participants underwent a clinical examination, standard 7-field color photography, and OCTA with commercial and prototype swept-source devices. The wide-field OCTA was achieved by montaging five 6 × 10-mm scans from a prototype device into a 25 × 10-mm image and three 6 × 6-mm scans from a commercial device into a 15 × 6-mm image. A masked grader determined the retinopathy severity from color photographs. Two trained readers ...

      Read Full Article
    7. Automated detection of shadow artifacts in optical coherence tomography angiography

      Automated detection of shadow artifacts in optical coherence tomography angiography

      Frequently, when imaging retinal vasculature with optical coherence tomography angiography (OCTA) in diseased eyes, there are unavoidable obstacles to the propagation of light such as vitreous floaters or the pupil boundary. These obstacles can block the optical coherence tomography (OCT) beam and impede the visualization of the underlying retinal microcirculation. Detecting these shadow artifacts is especially important in the quantification of metrics that assess retinal disease progression because they might masquerade as regional perfusion loss. In this work, we present an algorithm to identify shadowed areas in OCTA of healthy subjects as well as patients with diabetic retinopathy, uveitis and ...

      Read Full Article
    8. Automated phase unwrapping in Doppler optical coherence tomography

      Automated phase unwrapping in Doppler optical coherence tomography

      Phase wrapping is a crucial issue in Doppler optical coherence tomography (OCT) and restricts its automatic implementation for clinical applications that quantify total retinal blood flow. We propose an automated phase-unwrapping technique that takes advantage of the parabolic profile of blood flow velocity in vessels. Instead of inspecting the phase shift manually, the algorithm calculates the gradient magnitude of the phase shift on the cross-sectional image and automatically detects the presence of phase wrapping. The voxels affected by phase wrapping are corrected according to the determined flow direction adjacent to the vessel walls. We validated this technique in the rodent ...

      Read Full Article
    9. Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography

      Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography

      Visible light optical coherence tomography (vis-OCT) is an emerging label-free and high-resolution 3-dimensional imaging technique that can provide retinal oximetry, angiography, and flowmetry in one modality. In this paper, we studied the organization of the arterial and venous retinal circulation in rats using vis-OCT. Arterioles were found predominantly in the superficial vascular plexus whereas veins tended to drain capillaries from the deep capillary plexus. After that, we determined the oxygen metabolic rate supported by retinal microcirculation by combining retinal vessel oxygen saturation and blood flow measurements. The ability to visualize and monitor retinal circulation organization and oxygen metabolism by vis-OCT ...

      Read Full Article
    10. Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography

      Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography

      Advances in the retinal layer segmentation of structural optical coherence tomography (OCT) images have allowed the separation of capillary plexuses in OCT angiography (OCTA). With the increased scanning speeds of OCT devices and wider field images (≥10 mm on fast-axis), greater retinal curvature and anatomic variations have introduced new challenges. In this study, we developed a novel automated method to segment seven retinal layer boundaries and two retinal plexuses in wide-field OCTA images. The algorithm was initialized by a series of points forming a guidance point array that estimates the location of retinal layer boundaries. A guided bidirectional graph search ...

      Read Full Article
    11. Deep learning for the segmentation of preserved photoreceptors on en face optical coherence tomography in two inherited retinal diseases

      Deep learning for the segmentation of preserved photoreceptors on en face optical coherence tomography in two inherited retinal diseases

      The objective quantification of photoreceptor loss in inherited retinal degenerations (IRD) is essential for measuring disease progression, and is now especially important with the growing number of clinical trials. Optical coherence tomography (OCT) is a non-invasive imaging technology widely used to recognize and quantify such anomalies. Here, we implement a versatile method based on a convolutional neural network to segment the regions of preserved photoreceptors in two different IRDs (choroideremia and retinitis pigmentosa) from OCT images. An excellent segmentation accuracy (~90%) was achieved for both IRDs. Due to the flexibility of this technique, it has potential to be extended to ...

      Read Full Article
    12. Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT

      Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT

      Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and ...

      Read Full Article
    13. Automated spectroscopic retinal oximetry with visible-light optical coherence tomography

      Automated spectroscopic retinal oximetry with visible-light optical coherence tomography

      Accurate, quantitative assessment of retinal blood oxygen saturation ( sO 2 ) may provide a useful early indicator of pathophysiology in several ocular diseases. Here, with visible-light optical coherence tomography (OCT), we demonstrate an automated spectroscopic retinal oximetry algorithm to measure the sO 2 within the retinal arteries (A- sO 2 ) and veins (V- sO 2 ) in rats by automatically detecting the vascular posterior boundary on cross-sectional structural OCT. The algorithm was validated in vitro with flow phantoms and in vivo in rats by comparing the sO 2 results, respectively, to those obtained using a blood gas analyzer and pulse oximetry. We ...

      Read Full Article
    14. Automated detection of preserved photoreceptor on optical coherence tomography in choroideremia based on machine learning

      Automated detection of preserved photoreceptor on optical coherence tomography in choroideremia based on machine learning

      Optical coherence tomography (OCT) can demonstrate early deterioration of the photoreceptor integrity caused by inherited retinal degeneration diseases (IRD). A machine learning method based on random forests was developed to automatically detect continuous areas of preserved ellipsoid zone structure (an easily recognizable part of the photoreceptors on OCT) in sixteen eyes of patients with choroideremia (a type of IRD). Pseudopodial extensions protruding from the preserved ellipsoid zone areas are detected separately by a local active contour routine. The algorithm is implemented on en face images with minimum segmentation requirements, only needing delineation of the Bruch's membrane, thus evading the ...

      Read Full Article
    15. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography

      Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography

      Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90 ...

      Read Full Article
    16. Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography

      Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography

      We introduce a method to automatically detect drusen in dry age-related macular degeneration (AMD) from optical coherence tomography with minimum need for layer segmentation. The method is based on the en face detection of drusen areas in C-scans at certain distances above the Bruch’s membrane, circumventing the difficult task of pathologic retinal pigment epithelium segmentation. All types of drusen can be detected, including the challenging subretinal drusenoid deposits (pseudodrusen). The high sensitivity and accuracy demonstrated here shows its potential for detection of drusen onset in early AMD.

      Read Full Article
    17. Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography

      Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography

      We developed an algorithm to remove decorrelation noise due to bulk motion in optical coherence tomography angiography (OCTA) of the posterior eye. In this algorithm, OCTA B-frames were divided into segments within which the bulk motion velocity could be assumed to be constant. This velocity was recovered using linear regression of decorrelation versus the logarithm of reflectance in axial lines (A-lines) identified as bulk tissue by percentile analysis. The fitting parameters were used to calculate a reflectance-adjusted upper bound threshold for bulk motion decorrelation. Below this threshold, voxels are identified as non-flow tissue, their flow values are set to zeros ...

      Read Full Article
    18. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology

      Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology

      Artifacts introduced by eye motion in optical coherence tomography angiography (OCTA) affect the interpretation of images and the quantification of parameters with clinical value. Eradication of such artifacts in OCTA remains a technical challenge. We developed an algorithm that recognizes five different types of motion artifacts and used it to evaluate the performance of three motion removal technologies. On en face maximum projection of flow images, the summed flow signal in each row and column and the correlation between neighboring rows and columns were calculated. Bright line artifacts were recognized by large summed flow signal. Drifts, distorted lines, and stretch ...

      Read Full Article
    1-18 of 18
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (18 articles) Oregon Health & Science University
    2. (18 articles) Yali Jia
    3. (17 articles) David Huang
    4. (16 articles) Center for Ophthalmic Optics and Lasers
    5. (5 articles) National Institutes of Health
    6. (4 articles) Optovue
    7. (3 articles) Steven T. Bailey
    8. (2 articles) Christina J. Flaxel
    9. (2 articles) Mark E. Pennesi
    10. (1 articles) Utkarsh Sharma
    11. (1 articles) Gangjun Liu
    12. (1 articles) University of Houston
    13. (1 articles) University of Minnesota
    14. (1 articles) Indiana University
    15. (1 articles) Yale University
    16. (1 articles) Massachusetts Institute of Technology
    17. (1 articles) James G. Fujimoto
    18. (1 articles) Taner Akkin
    19. (1 articles) Donald T. Miller
  3. Popular Articles

  4. Picture Gallery

    Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography Automated detection of preserved photoreceptor on optical coherence tomography in choroideremia based on machine learning Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT Deep learning for the segmentation of preserved photoreceptors on en face optical coherence tomography in two inherited retinal diseases Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography Signal strength reduction effects in optical coherence tomographic angiography Indiana University Receives NIH Grant for Imaging Spatial and Temporal Dynamics of Retinal Ganglion Cells University of Houston Receives NIH Grant for Structural and Molecular Phenotyping of Embryonic Development Through Multi-Modal Optical Imaging.