1. Articles from Clara Pfäffle

    1-9 of 9
    1. Determination and correction of aberrations in full field OCT using phase gradient autofocus by maximizing the likelihood function

      Determination and correction of aberrations in full field OCT using phase gradient autofocus by maximizing the likelihood function

      A method for numerical estimation and correction of aberrations of the eye in fundus imaging with optical coherence tomography (OCT) is presented. Aberrations are determined statistically by using the estimate based on likelihood function maximization. The method can be considered as an extension of the phase gradient autofocusing algorithm in synthetic aperture radar imaging to 2D optical aberration correction. The efficacy of the proposed method has been demonstrated in OCT fundus imaging with 6λ aberrations. After correction, single photoreceptors were resolved. It is also shown that wavefront distortions with high spatial frequencies can be determined and corrected.

      Read Full Article
    2. Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations

      Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations

      Computational adaptive optics (CAO) is emerging as a viable alternative to hardware-based adaptive optics—in particular when applied to optical coherence tomography of the retina. For this technique, algorithms are required that detect wavefront errors precisely and quickly. Here we propose an extension of the frequently used subaperture image correlation. By applying this algorithm iteratively and, more importantly, comparing each subaperture not to the central subaperture but to several randomly selected apertures, we improved aberration correction. Since these modifications only slightly increase the run time of the correction, we believe this method can become the algorithm of choice for many ...

      Read Full Article
    3. Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion

      Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion

      In optical coherence tomography (OCT), lateral motion is determined either by speckle tracking or by multi-aperture Doppler OCT. Here we show that both methods may provide incorrect results because, outside the focal plane, non-uniform axial motion is misinterpreted as lateral motion. First, we demonstrate the existence of this artifact by means of a simulation for speckle tracking. Then the physical origin of the artifact and its mathematical relation to defocus and axial motion are explained. It is shown that speckle tracking and multi-aperture Doppler OCT are equally affected by the artifact, which has a considerable effect, even for a defocus ...

      Read Full Article
    4. Simple approach for aberration-corrected OCT imaging of the human retina

      Simple approach for aberration-corrected OCT imaging of the human retina

      Aberration-corrected imaging of human photoreceptor cells, whether hardware or software based, presently requires a complex and expensive setup. Here we use a simple and inexpensive off-axis full-field time-domain optical coherence tomography (OCT) approach to acquire volumetric data of an in vivo human retina. Full volumetric data are recorded in 1.3 s. After computationally correcting for aberrations, single photoreceptor cells were visualized. In addition, the numerical correction of ametropia is demonstrated. Our implementation of full-field optical coherence tomography combines a low technical complexity with the possibility for computational image correction.

      Read Full Article
    5. Interferometric detection of 3D motion using computational subapertures in optical coherence tomography

      Interferometric detection of 3D motion using computational subapertures in optical coherence tomography

      Doppler optical coherence tomography (OCT) quantifies axial motion with high precision, whereas lateral motion cannot be detected by a mere evaluation of phase changes. This problem was solved by the introduction of three-beam Doppler OCT, which, however, entails a high experimental effort. Here, we present the numerical analogue to this experimental approach. Phase-stable complex-valued OCT datasets, recorded with full-field swept-source OCT, are filtered in the Fourier domain to limit imaging to different computational subapertures. These are used to calculate all three components of the motion vector with interferometric precision. As known from conventional Doppler OCT for axial motion only, the ...

      Read Full Article
    6. Retinal pulse wave velocity measurement using spectral-domain optical coherence tomography

      Retinal pulse wave velocity measurement using spectral-domain optical coherence tomography

      In their latest publication on retinal pulse wave velocity measurement using optical co-herence tomography (OCT), Qian Li et al. propose a method to determine the pulse wave velocity in retinal arteries and veins [1]. This should enable a non-invasive determination of biomechanical properties of the vessel network, particularly the elasticity of the vessel walls [2].

      Read Full Article
    7. Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]

      Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]

      Full-field swept-source optical coherence tomography (FF-SS-OCT) was recently shown to allow new and exciting applications for imaging the human eye that were previously not possible using current scanning OCT systems. However, especially when using cameras that do not acquire data with hundreds of kHz frame rate, uncorrected phase errors due to axial motion of the eye lead to a drastic loss in image quality of the reconstructed volumes. Here we first give a short overview of recent advances in techniques and applications of parallelized OCT and finally present an iterative and statistical algorithm that estimates and corrects motion-induced phase errors ...

      Read Full Article
    8. Feature Of The Week 10/25/2015: Imaging Pulse Wave Propagation in Human Retina using Full-Field Swept-Source OCT

      Feature Of The Week 10/25/2015: Imaging Pulse Wave Propagation in Human Retina using Full-Field Swept-Source OCT

      We demonstrate a new noninvasive method to assess biomechanical properties of the retinal vascular system. Phase-sensitive full-field swept-source optical coherence tomography (PhS-FF-SS-OCT) is used to investigate retinal vascular dynamics at unprecedented temporal resolution. The motion of retinal tissue that is induced by expansion of the vessels therein is measured with an accuracy of about 10 nm. The pulse shapes of arterial and venous pulsations, their temporal delays, as well as the frequency-dependent pulse propagation through the capillary bed, are determined. For the first time, imaging speed and motion sensitivity are sufficient for a direct measurement of pulse waves propagating with ...

      Read Full Article
    9. Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography

      Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography

      We demonstrate a new noninvasive method to assess biomechanical properties of the retinal vascular system. Phase-sensitive full-field swept-source optical coherence tomography (PhS-FF-SS-OCT) is used to investigate retinal vascular dynamics at unprecedented temporal resolution. The motion of retinal tissue that is induced by expansion of the vessels therein is measured with an accuracy of about 10 nm. The pulse shapes of arterial and venous pulsations, their temporal delays, as well as the frequency-dependent pulse propagation through the capillary bed, are determined. For the first time, imaging speed and motion sensitivity are sufficient for a direct measurement of pulse waves propagating with ...

      Read Full Article
    1-9 of 9
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (8 articles) University of Lübeck
    2. (4 articles) Thorlabs
    3. (1 articles) Institute of Applied Physics
  3. Popular Articles

  4. Picture Gallery

    Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography Feature Of The Week 10/25/2015: Imaging Pulse Wave Propagation in Human Retina using Full-Field Swept-Source OCT Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited] Retinal pulse wave velocity measurement using spectral-domain optical coherence tomography Interferometric detection of 3D motion using computational subapertures in optical coherence tomography Simple approach for aberration-corrected OCT imaging of the human retina Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations Determination and correction of aberrations in full field OCT using phase gradient autofocus by maximizing the likelihood function Structural abnormalities associated with glaucoma using swept-source optical coherence tomography in patients with systemic sclerosis Clinical presentation does not affect acute mechanical performance of the Novolimus-eluting bioresorbable vascular scaffold as assessed by optical coherence tomography Evaluating optical coherence tomography (OCT) findings as potential biomarkers in central nervous system (CNS) lymphoma with or without ocular involvement