1. Articles from Joel S. Schuman

    1-24 of 127 1 2 3 4 5 6 »
    1. Dueling Deep Q-Network for Unsupervised Inter-frame Eye Movement Correction in Optical Coherence Tomography Volumes

      Dueling Deep Q-Network for Unsupervised Inter-frame Eye Movement Correction in Optical Coherence Tomography Volumes

      In optical coherence tomography (OCT) volumes of retina, the sequential acquisition of the individual slices makes this modality prone to motion artifacts, misalignments between adjacent slices being the most noticeable. Any distortion in OCT volumes can bias structural analysis and influence the outcome of longitudinal studies. On the other hand, presence of speckle noise that is characteristic of this imaging modality, leads to inaccuracies when traditional registration techniques are employed. Also, the lack of a well-defined ground truth makes supervised deep-learning techniques ill-posed to tackle the problem. In this paper, we tackle these issues by using deep reinforcement learning to ...

      Read Full Article
    2. Retinal blood flow reduction in normal-tension glaucoma with single-hemifield damage by Doppler optical coherence tomography

      Retinal blood flow reduction in normal-tension glaucoma with single-hemifield damage by Doppler optical coherence tomography

      Aims To evaluate the associations between retinal blood flow (RBF) and optical coherence tomography (OCT) structural measurements in normal-tension glaucoma (NTG) eyes with single-hemifield visual field (VF) damage by the Doppler OCT. Methods The Doppler OCT was used to measure temporal artery (TA) RBF and temporal vein (TV) RBF. Retinal nerve fibre layer thickness (RNFLT) was measured by spectral-domain OCT. Results Forty-three consecutive eyes of 43 patients with NTG with VF defect confined to a single hemifield and 24 eyes of 24 age-matched healthy subjects were studied. TA and TV RBF and RNFLT were reduced in the damaged hemisphere compared ...

      Read Full Article
    3. Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients

      Estimating Visual Field Mean Deviation using Optical Coherence Tomographic Nerve Fiber Layer Measurements in Glaucoma Patients

      To construct an optical coherence tomography (OCT) nerve fiber layer (NFL) parameter that has maximal correlation and agreement with visual field (VF) mean deviation (MD). The NFL_MD parameter in dB scale was calculated from the peripapillary NFL thickness profile nonlinear transformation and VF area-weighted averaging. From the Advanced Imaging for Glaucoma study, 245 normal, 420 pre-perimetric glaucoma (PPG), and 289 perimetric glaucoma (PG) eyes were selected. NFL_MD had significantly higher correlation (Pearson R: 0.68 vs 0.55, p < 0.001) with VF_MD than the overall NFL thickness. NFL_MD also had significantly higher sensitivity in detecting PPG (0.14 vs ...

      Read Full Article
    4. Speckle reduction in visible-light optical coherence tomography using scan modulation

      Speckle reduction in visible-light optical coherence tomography using scan modulation

      We present a technique to reduce speckle in visible-light optical coherence tomography (vis-OCT) that preserves fine structural details and is robust against sample motion. Specifically, we locally modulate B-scans orthogonally to their axis of acquisition. Such modulation enables acquisition of uncorrelated speckle patterns from similar anatomical locations, which can be averaged to reduce speckle. To verify the effectiveness of speckle reduction, we performed in-vivo retinal imaging using modulated raster and circular scans in both mice and humans. We compared speckle-reduced vis-OCT images with the images acquired with unmodulated B-scans from the same anatomical locations. We compared contrast-to-noise ratio (CNR) and ...

      Read Full Article
    5. Inference of visual field test performance from OCT volumes using deep learning

      Inference of visual field test performance from OCT volumes using deep learning

      Visual field tests (VFT) are pivotal for glaucoma diagnosis and conducted regularly to monitor disease progression. Here we address the question to what degree aggregate VFT measurements such as Visual Field Index (VFI) and Mean Deviation (MD) can be inferred from Optical Coherence Tomography (OCT) scans of the Optic Nerve Head (ONH) or the macula. Accurate inference of VFT measurements from OCT could reduce examination time and cost. We propose a novel 3D Convolutional Neural Network (CNN) for this task and compare its accuracy with classical machine learning (ML) algorithms trained on common, segmentation-based OCT, features employed for glaucoma diagnostics ...

      Read Full Article
    6. Designing visible-light optical coherence tomography towards clinics

      Designing visible-light optical coherence tomography towards clinics

      Background: The capabilities of visible-light optical coherence tomography (vis-OCT) in noninvasive anatomical and functional retinal imaging have been demonstrated by multiple groups in both rodents and healthy human subjects. Translating laboratory prototypes to an integrated clinical-environment-friendly system is required to explore the full potential of vis-OCT in disease management. Methods: We developed and optimized a portable vis-OCT system for human retinal imaging in clinical settings. We acquired raster- and circular-scan images from both healthy and diseased human eyes. Results: The new vis-OCT provided high-quality retinal images of both subjects without any known eye diseases and patients with various retinal diseases ...

      Read Full Article
    7. Retinal optical coherence tomography image enhancement via deep learning

      Retinal optical coherence tomography image enhancement via deep learning

      Optical coherence tomography (OCT) images of the retina are a powerful tool for diagnosing and monitoring eye disease. However, they are plagued by speckle noise, which reduces image quality and reliability of assessment. This paper introduces a novel speckle reduction method inspired by the recent successes of deep learning in medical imaging. We present two versions of the network to reflect the needs and preferences of different end-users. Specifically, we train a convolution neural network to denoise cross-sections from OCT volumes of healthy eyes using either (1) mean-squared error, or (2) a generative adversarial network (GAN) with Wasserstein distance and ...

      Read Full Article
    8. Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm

      Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm

      In this paper, we propose a novel classification model for automatically identifying individuals with age-related macular degeneration (AMD) or Diabetic Macular Edema (DME) using retinal features from Spectral Domain Optical Coherence Tomography (SD-OCT) images. Our classification method uses retinal features such as the thickness of the retina and the thickness of the individual retinal layers, and the volume of the pathologies such as drusen and hyper-reflective intra-retinal spots. We extract automatically, ten clinically important retinal features by segmenting individual SD-OCT images for classification purposes. The effectiveness of the extracted features is evaluated using several classification methods such as Random Forrest ...

      Read Full Article
    9. Optical coherence tomography as a rapid, accurate, non-contact method of visualizing the palisades of Vogt

      Optical coherence tomography as a rapid, accurate, non-contact method of visualizing the palisades of Vogt

      The innovation provides for a system and method available to image and visualize the palisades of Vogt via a non-contact process, analyze the image volumes acquired, evaluate the status of the palisades of Vogt from the data represented therein, and display the data in real-time or as a part of a medical record for ongoing consideration and evaluation.

      Read Full Article
    10. An Automated Method for Choroidal Thickness Measurement from Enhanced Depth Imaging Optical Coherence Tomography Images

      An Automated Method for Choroidal Thickness Measurement from Enhanced Depth Imaging Optical Coherence Tomography Images

      The choroid is vascular tissue located underneath the retina and supplies oxygen to the outer retina; any damage to this tissue can be a precursor to retinal diseases. This paper presents an automated method of choroidal segmentation from enhanced depth imaging optical coherence tomography (EDI-OCT) images. The Dijkstra shortest path algorithm is used to segment the choroid-sclera interface (CSI), the outermost border of the choroid. A novel intensity-normalisation technique that is based on the depth of the choroid is used to equalise the intensity of all non-vessel pixels in the choroid region. The outer boundary of choroidal vessel and CSI ...

      Read Full Article
    11. The Future of Imaging in Detecting Glaucoma Progression

      The Future of Imaging in Detecting Glaucoma Progression

      Ocular imaging has been heavily incorporated into glaucoma management and provides important information that aids in the detection of disease progression. Longitudinal studies have shown that the circumpapillary retinal nerve fiber layer is an important parameter for glaucoma progression detection, whereas other studies have demonstrated that macular parameters, such as the ganglion cell inner plexiform layer and optic nerve head parameters, also are useful for progression detection. The introduction of novel technologies with faster scan speeds, wider scanning fields, higher resolution, and improved tissue penetration has enabled the precise quantification of additional key ocular structures, such as the individual retinal ...

      Read Full Article
    12. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field

      Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field

      Purpose To compare longitudinal glaucoma progression detection using optical coherence tomography (OCT) and visual field (VF). Design Validity assessment Method We analyzed subjects with more than 5 follow-up visits (every 6 months) in the multi-center Advanced Imaging for Glaucoma Study. Fourier-domain optical coherence tomography (OCT) was used to map the thickness of the peripapillary retinal nerve fiber layer (NFL) and ganglion cell complex (GCC). OCT-based progression detection was defined as a significant negative trend for either NFL or GCC. VF progression was reached if either the event or trend analysis reached significance. Result The analysis included 417 glaucoma suspect/pre-perimetric ...

      Read Full Article
    13. Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices

      Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices

      Purpose : To assess the effect of the previously reported optical coherence tomography (OCT) signal normalization method on reducing the discrepancies in image appearance among spectral-domain OCT (SD-OCT) devices. Methods : Healthy eyes and eyes with various retinal pathologies were scanned at the macular region using similar volumetric scan patterns with at least two out of three SD-OCT devices at the same visit (Cirrus HD-OCT, Zeiss, Dublin, CA; RTVue, Optovue, Fremont, CA; and Spectralis, Heidelberg Engineering, Heidelberg, Germany). All the images were processed with the signal normalization. A set of images formed a questionnaire with 24 pairs of cross-sectional images from each ...

      Read Full Article
    14. Adaptive optics optical coherence tomography in glaucoma

      Adaptive optics optical coherence tomography in glaucoma

      Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior ...

      Read Full Article
    15. Establishing compatibility between two- and three-dimensional optical coherence tomography scans

      Establishing compatibility between two- and three-dimensional optical coherence tomography scans

      Advances in optical coherence tomography (OCT) have prompted a transition from time domain OCT, providing 2D OCT images, to spectral domain OCT, which has a 3D imaging capability. Yet conventional technology offers little toward the goal of inter-device compatibility between extant 2D OCT images and newer 3D OCT images for the same or comparable subjects, as in the context of ongoing monitoring the quantitative status of a patient's eyes. The inventive methodology is particularly useful to identify the scan location of tissue in a 2D OCT image within the 3D OCT volumetric data, thereby allowing clinicians to image a ...

      Read Full Article
    16. Optical Coherence Tomography in High Myopia

      Optical Coherence Tomography in High Myopia

      Optical coherence tomography (OCT) is a precise technology that can be used for interrogating tissue structure and function noninvasively, painlessly, and quickly using near-infrared light. At its inception, OCT was typically a tool for assessing tissue thickness. Time-domain OCT is fast enough to scan a circle centered on the optic nerve head (circumpapillary) to assess retinal nerve fiber layer (RNFL) thickness. With the development of spectral-domain OCT, volumetric (3-dimensional) scanning becomes feasible.

      Read Full Article
    17. Clinical Utility of Optical Coherence Tomography in Glaucoma

      Clinical Utility of Optical Coherence Tomography in Glaucoma

      Optical coherence tomography (OCT) has established itself as the dominant imaging modality in the management of glaucoma and retinal diseases, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change. This article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the clinical utility of OCT with respect to diagnosis and progression monitoring, with additional emphasis on advances in OCT technology that continue to facilitate glaucoma research and inform clinical management strategies.

      Read Full Article
    18. Optical Coherence Tomography in High Myopia

      Optical Coherence Tomography in High Myopia

      Optical coherence tomography (OCT) is a precise technology that can be used for interrogating tissue structure and function noninvasively, painlessly, and quickly using near-infrared light. At its inception, OCT was typically a tool for assessing tissue thickness. Time-domain OCT is fast enough to scan a circle centered on the optic nerve head (circumpapillary) to assess retinal nerve fiber layer (RNFL) thickness. With the development of spectral-domain OCT, volumetric (3-dimensional) scanning becomes feasible.

      Read Full Article
    19. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

      Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

      Purpose : Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods : Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and ...

      Read Full Article
    20. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies

      The APOSTEL recommendations for reporting quantitative optical coherence tomography studies

      Objective: To develop consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results. Methods: A panel of experienced OCT researchers (including 11 neurologists, 2 ophthalmologists, and 2 neuroscientists) discussed requirements for performing and reporting quantitative analyses of retinal morphology and developed a list of initial recommendations based on experience and previous studies. The list of recommendations was subsequently revised during several meetings of the coordinating group. Results: We provide a 9-point checklist encompassing aspects deemed relevant when reporting quantitative OCT studies. The areas covered are study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection ...

      Read Full Article
    21. Longitudinal and Cross-Sectional Analyses of Age and Intraocular Pressure Effects on Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness

      Longitudinal and Cross-Sectional Analyses of Age and Intraocular Pressure Effects on Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness

      Purpose : To study the effect of age and intraocular pressure (IOP) on retinal nerve fiber layer (NFL) and ganglion cell complex (GCC) thickness in normal eyes. Methods : We analyzed the data from subjects enrolled in the multi-center longitudinal Advanced Imaging for Glaucoma (AIG) Study (www.AIGStudy.net). The data included yearly visits from the normal subjects group in the AIGS study. Fourier-domain optical coherence tomography (OCT) was used to map the thickness of NFL and GCC three times on each visit. To adjust for the repeated measurements for the same subjects, mixed effect models were used to evaluate the longitudinal ...

      Read Full Article
    22. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images

      Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images

      Purpose : Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods : Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing ...

      Read Full Article
    23. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography

      Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography

      Purpose To predict the development of glaucomatous visual field (VF) defects using Fourier-domain optical coherence tomography (FD-OCT) measurements at baseline visit. Design Multi-center longitudinal observational study. Glaucoma suspects and pre-perimetric glaucoma participants in the Advanced Imaging for Glaucoma Study. Methods The optic disc, the peripapillary retinal nerve fiber layer (NFL), and macular ganglion cell complex (GCC) were imaged with FD-OCT VF was assessed every 6 months. Conversion to perimetric glaucoma was defined by VF pattern standard deviation (PSD) or glaucoma hemifield test (GHT) outside normal limits on 3 consecutive tests. Hazard ratios were calculated with the Cox proportional hazard model ...

      Read Full Article
    24. Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma

      Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma

      Background The study aims to correlate Fourier-domain optical coherence tomography (FD-OCT) with Goldmann visual field (GVF) to show the photoreceptor (PR) structure and function relationship in the first described case of cancer-associated retinopathy (CAR) from Merkel cell carcinoma. Findings A case study of a patient with CAR who was imaged with serial GVF and FD-OCT over a 2-year period was carried out. En face images were created using a custom algorithm from the volumetric Fourier-domain OCT scans at the PR level. The areas of decreased PR reflectivity on the en face images were compared with GVF obtained at the same ...

      Read Full Article
    1-24 of 127 1 2 3 4 5 6 »
  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics in the News

    1. (127 articles) Joel S. Schuman
    2. (109 articles) University of Pittsburgh
    3. (78 articles) Gadi Wollstein
    4. (71 articles) Hiroshi Ishikawa
    5. (47 articles) Larry Kagemann
    6. (41 articles) Massachusetts Institute of Technology
    7. (37 articles) James G. Fujimoto
    8. (29 articles) Richard A. Bilonick
    9. (28 articles) Carl Zeiss Meditec
    10. (21 articles) Jay S. Duker
    11. (1 articles) Harvard University
    12. (1 articles) Massachusetts General Hospital
    13. (1 articles) Guillermo J. Tearney
    14. (1 articles) Xincheng Yao
    15. (1 articles) Brett E. Bouma
    16. (1 articles) Zygo
  3. Popular Articles

  4. Picture Gallery

    Everyday OCT: A Handbook for Clinicians and Technicians (Book) Optical Coherence Tomography of Ocular Diseases, Second Edition (Book) Spectral Domain Optical Coherence Tomography for Glaucoma (An AOS Thesis) Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography Imaging the Eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography (Book) Optical Coherence Tomography: History, Current Status, and Laboratory Work Postdoctoral Openings in Biomedical Optics and Retinal Imaging Laboratory at University of Illinois at Chicago Devices and arrangements for performing coherence range imaging using a common path interferometer Scan error correction in low coherence scanning interferometry Optical imaging techniques could offer non-invasive method to measure swelling within the brain, new study finds Using Optical Coherence Tomography as a Surrogate of Measurements of Intracranial Pressure in Idiopathic Intracranial Hypertension Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies