Automated Deep Learning-based Multi-class Fluid Segmentation in Swept-Source Optical Coherence Tomography Images

Purpose: To evaluate the performance of a deep learning-based, fully automated, multi-class, macular fluid segmentation algorithm relative to expert annotations in a heterogeneous population of confirmed wet age-related macular degeneration (wAMD) subjects. Methods: Twenty-two swept-source optical coherence tomography (SS-OCT) volumes of the macula from 22 from different individuals with wAMD were manually annotated by two expert graders. These results were compared using cross-validation (CV) to automated segmentations using a deep learning-based algorithm encoding spatial information about retinal tissue as an additional input to the network. The algorithm detects and delineates fluid regions in the OCT data, differentiating between intra- and ...
Login to comment.