High space-bandwidth in quantitative phase imaging using partially spatially coherent optical coherence microscopy and deep neural network

Quantitative phase microscopy (QPM) is a label-free technique that enables to monitor morphological changes at subcellular level. The performance of the QPM system in terms of spatial sensitivity and resolution depends on the coherence properties of the light source and the numerical aperture (NA) of objective lenses. Here, we propose high space-bandwidth QPM using partially spatially coherent optical coherence microscopy (PSC-OCM) assisted with deep neural network. The PSC source synthesized to improve the spatial sensitivity of the reconstructed phase map from the interferometric images. Further, compatible generative adversarial network (GAN) is used and trained with paired low-resolution (LR) and high-resolution ...
Login to comment.