Visible light optical coherence tomography angiography (vis-OCTA)

We report herein the first visible light optical coherence tomography angiography (vis-OCTA) for human retinal imaging. Compared to the existing vis-OCT systems, we devised a spectrometer with a narrower bandwidth to increase the spectral power density for OCTA imaging, while retaining the major spectral contrast in the blood. We achieved a 100 kHz A-line rate, the fastest acquisition speed reported so far for human retinal vis-OCT. We rigorously optimized the imaging protocol such that a single acquisition takes <6 seconds with a field of view (FOV) of 3x7.8 mm2. The angiography enables accurate localization of microvasculature down to the ...
Login to comment.