1. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping

    Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping

    Multiple scattering in turbid media inhibits optimal light focusing and thus limits the penetration depth in optical coherence tomography (OCT). However, the effects of multiple scattering in a turbid medium can be systematically controlled by shaping the incident wavefront. The authors utilize the reciprocity of Maxwell’s equations and finite-difference time-domain numerical analysis to investigate the ultimate performance bounds of wavefront shaping-OCT under ideal and realistic configurations and compare them with the conventional method. The results reveal that the optimized impinging wavefront significantly enhances the penetration depth of OCT.

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors