1. Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm

    Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm

    In this paper, we propose a novel classification model for automatically identifying individuals with age-related macular degeneration (AMD) or Diabetic Macular Edema (DME) using retinal features from Spectral Domain Optical Coherence Tomography (SD-OCT) images. Our classification method uses retinal features such as the thickness of the retina and the thickness of the individual retinal layers, and the volume of the pathologies such as drusen and hyper-reflective intra-retinal spots. We extract automatically, ten clinically important retinal features by segmenting individual SD-OCT images for classification purposes. The effectiveness of the extracted features is evaluated using several classification methods such as Random Forrest ...

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors