Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography
Studying hemodynamic changes during early mammalian embryonic development is critical for further advances in prevention, diagnostics, and treatment of congenital cardiovascular (CV) birth defects and diseases. Doppler optical coherence tomography (OCT) has been shown to provide sensitive measurements of blood flow in avian and amphibian embryos. We combined Doppler swept-source optical coherence tomography (DSS-OCT) and live mouse embryo culture to analyze blood flow dynamics in early embryos. SS-OCT structural imaging was used for the reconstruction of embryo morphology and the orientation of blood vessels, which is required for calculating flow velocity from the Doppler measurements. Spatially and temporally resolved blood ...
Login to comment.