1. Optical Coherence Tomography Reveals Mechanobiologically Stable Self-Organizing Di-Fork Architecture of Mice Cutaneous Scars

    Optical Coherence Tomography Reveals Mechanobiologically Stable Self-Organizing Di-Fork Architecture of Mice Cutaneous Scars

    Scientific studies report crucial impacts of biomechanical effectors to modulate wound healing either by scarring or regeneration. Further, the biological decision to predominantly favor the former is still cryptic. Real-time visualization of biomechanical manifestations in situ in scarring is hence necessary. Endorsed by nanostructural testing, synthetic phantom analysis, and computational simulations, we found strong mechanobiological correlates for Swept Source Optical Coherence Tomography (SS-OCT) speckles in mice cutaneous repair (full-thickness) up to 10 months. The theoretical basis of the optomechanics to provide insights into scar form-factor and evolution is proposed. Optomechanical changes have been considered as the resultant of intrinsic (e ...

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Authors