1. Deep-learning based, automated segmentation of macular edema in optical coherence tomography

    Deep-learning based, automated segmentation of macular edema in optical coherence tomography

    Evaluation of clinical images is essential for diagnosis in many specialties. Therefore the development of computer vision algorithms to help analyze biomedical images will be important. In ophthalmology, optical coherence tomography (OCT) is critical for managing retinal conditions. We developed a convolutional neural network (CNN) that detects intraretinal fluid (IRF) on OCT in a manner indistinguishable from clinicians. Using 1,289 OCT images, the CNN segmented images with a 0.911 cross-validated Dice coefficient, compared with segmentations by experts. Additionally, the agreement between experts and between experts and CNN were similar. Our results reveal that CNN can be trained to ...

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors