1. Measurement of in vivo basal-turn vibrations of the organ of Corti using phase-sensitive Fourier domain optical coherence tomography

    Measurement of in vivo basal-turn vibrations of the organ of Corti using phase-sensitive Fourier domain optical coherence tomography

    A major reason we can perceive faint sounds and communicate in noisy environments is that the outer hair cells of the organ of Corti enhance the sound-evoked motions inside the cochlea. To understand how the organ of Corti works, we have built and tested the phase-sensitive Fourier domain optical coherence tomography (PSFDOCT) system. This system has key advantages over our previous time domain OCT system [1]. The PSFDOCT system has better signal to noise and simultaneously acquires vibration data from all points along the optical-axis [2]. Feasibility of this system to measure in vitro cochlear vibrations in the apex was ...

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors