1. Biomechanical Properties of in Vivo Human Skin From Dynamic Optical Coherence Elastography

    Biomechanical Properties of in Vivo Human Skin From Dynamic Optical Coherence Elastography
    Dynamic optical coherence elastography is used to determine in vivoskin biomechanical properties based on mechanical surface wave propagation. Quantitative Youngs moduli are measured on human skin from different sites, orientations, and frequencies. Skin thickness, including measurements from different layers, are also measured simultaneously. Experimental results show significant differences among measurements from different skin sites, between directions parallel and orthogonal to Langers lines, and under different skin hydration states. Results also suggest surface waves with different driving frequencies represent skin biomechanical properties from different layers in depth. With features such as micron-scale resolution, non-invasive imaging, and real-time processing from the optical ...
    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors