1. Classifying breast cancer in ultrahigh-resolution optical coherence tomography images using convolutional neural networks

    Classifying breast cancer in ultrahigh-resolution optical coherence tomography images using convolutional neural networks

    Optical coherence tomography (OCT) is being investigated in breast cancer diagnostics as a real-time histology evaluation tool. We present a customized deep convolutional neural network (CNN) for classification of breast tissues in OCT B-scans. Images of human breast samples from mastectomies and breast reductions were acquired using a custom ultrahigh-resolution OCT system with 2.72 µm axial resolution and 5.52 µm lateral resolution. The network achieved 96.7% accuracy, 92% sensitivity, and 99.7% specificity on a dataset of 23 patients. The usage of deep learning will be important for the practical integration of OCT into clinical practice.

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors