1. Digital refocusing based on deep learning in optical coherence tomography

    Digital refocusing based on deep learning in optical coherence tomography

    We present a deep learning-based digital refocusing approach to extend depth of focus for optical coherence tomography (OCT) in this paper. We built pixel-level registered pairs of en face low-resolution (LR) and high-resolution (HR) OCT images based on experimental data and introduced the receptive field block into the generative adversarial networks to learn the complex mapping relationship between LR-HR image pairs. It was demonstrated by results of phantom and biological samples that the lateral resolutions of OCT images were improved in a large imaging depth clearly. We firmly believe deep learning methods have broad prospects in optimizing OCT imaging.

    Read Full Article

    Login to comment.

  1. Categories

    1. Applications:

      Art, Cardiology, Dentistry, Dermatology, Developmental Biology, Gastroenterology, Gynecology, Microscopy, NDE/NDT, Neurology, Oncology, Ophthalmology, Other Non-Medical, Otolaryngology, Pulmonology, Urology
    2. Business News:

      Acquisition, Clinical Trials, Funding, Other Business News, Partnership, Patents
    3. Technology:

      Broadband Sources, Probes, Tunable Sources
    4. Miscellaneous:

      Jobs & Studentships, Student Theses, Textbooks
  2. Topics Mentioned

  3. Authors