Automatic segmentation of intraocular lens, the retrolental space and Berger's space using deep learning

Purpose To develop and validate a deep learning model to automatically segment three structures using an anterior segment optical coherence tomography (AS-OCT): The intraocular lens (IOL), the retrolental space (IOL to the posterior lens capsule) and Berger's space (BS; posterior capsule to the anterior hyaloid membrane). Methods An artificial intelligence (AI) approach based on a deep learning model to automatically segment the IOL, the retrolental space, and BS in AS-OCT, was trained using annotations from an experienced clinician. The training, validation and test set consisted of 92 cross-sectional OCT slices, acquired in 47 visits from 41 eyes. Annotations from ...
Login to comment.