Reconstruction of Optical Coherence Tomography Images Using Mixed Low Rank Approximation and Second Order Tensor Based Total Variation Method

This paper proposes a mixed low-rank approximation and second-order tensor-based total variation (LRSOTTV) approach for the super-resolution and denoising of retinal optical coherence tomography (OCT) images through effective utilization of nonlocal spatial correlations and local smoothness properties. OCT imaging relies on interferometry, which explains why OCT images suffer from a high level of noise. In addition, data subsampling is conducted during OCT A-scan and B-scan acquisition. Therefore, using effective super-resolution algorithms is necessary for reconstructing high-resolution clean OCT images. In this paper, a low-rank regularization approach is proposed for exploiting nonlocal self-similarity prior to OCT image reconstruction. To benefit from ...
Login to comment.