Denoising Performance Evaluation of Automated Age-related Macular Degeneration Detection on Optical Coherence Tomography Images

Automated detection of eye diseases using artificial intelligence techniques on optical coherence tomography (OCT) images is widely researched in the field of ophthalmology. Such detections are usually performed with the aid of computers. Using high-level simulations, this study investigates and evaluates three automated age-related macular degeneration (AMD) detection flows in terms of computation time and detection accuracy for future hardware-accelerated designs of intelligent and portable OCT systems. In this study, a block-matching and 3-Dimension filter (BM3DF), a hybrid median filter (HMF), and an adaptive wiener filter (AWF) are used to denoise the OCT images. Support vector machine (SVM), AlexNet, GoogLeNet ...
Login to comment.